Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2017, Vol. 11 Issue (4) : 568-574    https://doi.org/10.1007/s11708-017-0461-y
RESEARCH ARTICLE
Combustion analysis of a hydrogen-diesel fuel operated DI diesel engine with exhaust gas recirculation
M. LOGANATHAN1(), A. VELMURUGAN1, TOM PAGE2, E. JAMES GUNASEKARAN1, P. TAMILARASAN1
1. Department of Mechanical Engineering, Annamalai University, Annamalainagar 608002, India
2. Product Design and Manufacturing, Loughborough University, Loughborough LE11 3TU, United Kingdom
 Download: PDF(360 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The rapid depletion of fossil fuel and growing demand necessitates researchers to find alternative fuels which are clean and sustainable. The need for finding renewable, low cost and environmentally friendly fuel resources can never be understated. An efficient method of generation and storage of hydrogen will enable automotive manufacturers to introduce hydrogen fuelled engine in the market. In this paper, a conventional DI diesel engine was modified to operate as gas engine. The intake manifold of the engine was supplied with hydrogen along with recirculated exhaust gas and air. The injection rates of hydrogen were maintained at three levels with 2 L/min, 4 L/min, 6 L/min and 8 L/min and 10 L/min with an injection pressure of 2 bar. Many of the combustion parameters like heat release rate (HRR), ignition delay, combustion duration, rate of pressure rise (ROPR), cumulative heat release rate (CHR), and cyclic pressure fluctuations were measured. The HRR peak pressure decreased with the increase in EGR rate, while combustion duration increased with the EGR rate. The cyclic pressure variation also increased with the increase in EGR rate.

Keywords hydrogen      exhaust gas recirculation (EGR)      diesel      combustion      heat release rate (HRR)      combustion duration     
Corresponding Author(s): M. LOGANATHAN   
Just Accepted Date: 10 February 2017   Online First Date: 17 March 2017    Issue Date: 14 December 2017
 Cite this article:   
M. LOGANATHAN,A. VELMURUGAN,TOM PAGE, et al. Combustion analysis of a hydrogen-diesel fuel operated DI diesel engine with exhaust gas recirculation[J]. Front. Energy, 2017, 11(4): 568-574.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-017-0461-y
https://academic.hep.com.cn/fie/EN/Y2017/V11/I4/568
Properties Diesel Hydrogen
Chemical composition Cn H1.8n
(C8-C20)
H2
Auto-ignition temperature/K 530 858
Minimum ignition energy/mJ 0.02
Flammability limits (volume, in air)/% 0.7–5 4–75
Stoich. Air/fuel ratio on mass basis 14.5 34.3
Density 16 °C and 1 bar/(kg·m–3) 833–881 0.0838
Net heating valve/(MJ·kg–1) 42.5 119.93
Flame velocity/(cm·s–1) 30 265–325
Diffusivity in air/(cm2·s–1) 0.63
Cetane number 40–55
Octane number 130
Tab.1  Properties ofHydrogen
Make Type Max. power Displacement Bore× Stroke/mm2 Compression ratio Fuel injection timing Loading device
Kirloskar AV-1 Single cylinder, water cooled 3.7 kW at 1500 r/min 550 CC 80 × 110 16.5:1 21deg BTDC Eddy current dynamometer
Tab.2  Specificationof test engine
Fig.1  Experimental setup
Fig.2  Schematic diagram of experimentalsetup
Fig.3  Variation of heat releaserate HRR with crank angle
Fig.4  Variation of cylinder pressurewith crank angle
Fig.5  Variation of ignition delaywith brake power
Fig.6  Variation of combustion durationwith the brake power
Fig.7  Variation of ROPR with thebrake power of the engine
Fig.8  Variation of CHR with thecrank angle of the engine
Fig.9  Variation of CGT with thebrake power of the engine
Fig.10  Variation of cylinder pressurewith brake power
1 Maiboom A, Tauzia  X, He’tet J F . Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine. Energy, 2008, 33(1): 22–34
https://doi.org/10.1016/j.energy.2007.08.010
2 Masood M, Ishrat  M M, Reddy  A S. Computational combustion and emission analysis of hydrogen–diesel blends with experimental verification. International Journal of Hydrogen Energy,  2007,  32(13): 2539–2547
3 Heffel J W. NOx emission and performance data for a hydrogen fueled internal combustion engine at 1500 r/min using exhaust gas recirculation. International Journal of Hydrogen Energy, 2003, 28(8): 901–908
https://doi.org/10.1016/S0360-3199(02)00157-X
4 Selim M Y E . Effect of exhaust gas recirculation on some combustion characteristics of dual fuel engine. Energy Conversion and Management, 2003, 44(5): 707–721
https://doi.org/10.1016/S0196-8904(02)00083-3
5 Saravanan N, Nagarajan  G, Kalaiselvan K M ,  Dhanasekaran C . An experimental investigation on hydrogen as a dual fuel for diesel engine system with exhaust gas recirculation technique. Renewable Energy, 2008, 33(3): 422–427
https://doi.org/10.1016/j.renene.2007.03.015
6 Rao B H, Shrivastava  KN, Bhakta HN . Hydrogen for dual fuel engine operation. International Journal of Hydrogen Energy,  1983,  8(5): 381–384
7 Bose P K, Maji  D. An experimental investigation on engine performance and emissions of a single cylinder diesel engine using hydrogen as inducted fuel and diesel as injected fuel with exhaust gas recirculation. International Journal of Hydrogen Energy, 2009, 34(11): 4847–4854
https://doi.org/10.1016/j.ijhydene.2008.10.077
8 Maiboom A, Tauzia  X, He’tet J F . Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine. Energy, 2008, 33(1): 22–34
https://doi.org/10.1016/j.energy.2007.08.010
9 Nakano M, Mandokoro  Y, Kubo S ,  Yamazaki S . Effects of exhaust gas recirculation in homogeneous charge compression ignition engines. International Journal of Engine Research,  2000,  1(3): 269–279
10 Saravanan N, Nagarajan  G, Dhanasekaran C ,  Kalaiselvan K . Experimental investigation of hydrogen port fuel injection in DI diesel engine. International Journal of Hydrogen Energy, 2007, 32(16): 4071–4080
https://doi.org/10.1016/j.ijhydene.2007.03.036
11 Saravanan N, Nagarajan  G. An experimental investigation of hydrogen-enriched air induction in a diesel engine system. International Journal of Hydrogen Energy, 2008, 33(6): 1769–1775
https://doi.org/10.1016/j.ijhydene.2007.12.065
12 Ghazal O.A comparative evaluation of the performance of different fuel induction techniques for blends hydrogen methane SI engine. International Journal of Hydrogen Energy,  2013,  38(16): 6848–6856
13 Bauer CG, Forest  TW. Effect of hydrogen addition on the performance of methane-fueled vehicles. Part II: Driving cycle simulations. International Journal of Hydrogen Energy,  2001,  26(1): 55–70
14 Szwaja S, Grab-Rogalinski  K. Hydrogen combustion in a compression ignition diesel engine. International Journal of Hydrogen Energy,  2009,  34(10): 4413–4421
15 Noda T, Foster  D E. A numerical study to control combustion duration of hydrogen-fueled HCCI by using multi-zone chemical kinetics simulation. SAE Technical Paper 2001-01-0250, 2001
16 Das L M. Hydrogen engine: research and development (R&D) programmersinIndian Institute of Technology (IIT), Delhi. International Journal of Hydrogen Energy, 2002, 27(9): 953–965
https://doi.org/10.1016/S0360-3199(01)00178-1
17 Bose P K, Maji  D. An experimental investigation on engine performance and emissions of a single cylinder diesel engine using hydrogen as inducted fuel and diesel as injected fuel with exhaust gas recirculation.International Journal of Hydrogen Energy,  2009,  34(11): 4847–4854
18 Bari S, Mohammad Esmaeil  M. Effect of H2/O2 addition in increasing the thermal efficiency of a diesel engine. Fuel, 2010, 89(2): 378–383
https://doi.org/10.1016/j.fuel.2009.08.030
19 Antunes JM G, Mikalsen  R, Roskilly AP . An experimental study of direct injection compression ignition hydrogen engine.International Journal of Hydrogen Energy,  2009,  34(15): 6516–6522
20 Welch A B, Wallace  J S. Performance characteristic of a hydrogen-fueled diesel engine with ignition assist. International Fuels & Lubricants Meeting & Exposition, 1990: 902070
21 Naber J D, Szwaja  S. Statistical approach to characterize combustion knock in the hydrogen fuelled SI engine. Experiments in Fluids,  2007,  65(39): 1084–1095
[1] Hilal ÇELİK KAZICI, Şakir YILMAZ, Tekin ŞAHAN, Fikret YILDIZ, Ömer Faruk ER, Hilal KIVRAK. A comprehensive study of hydrogen production from ammonia borane via PdCoAg/AC nanoparticles and anodic current in alkaline medium: experimental design with response surface methodology[J]. Front. Energy, 2020, 14(3): 578-589.
[2] Jianpeng ZHENG, Liubiao CHEN, Ping WANG, Jingjie ZHANG, Junjie WANG, Yuan ZHOU. A novel cryogenic insulation system of hollow glass microspheres and self-evaporation vapor-cooled shield for liquid hydrogen storage[J]. Front. Energy, 2020, 14(3): 570-577.
[3] Ru Shien TAN, Tuan Amran TUAN ABDULLAH, Anwar JOHARI, Khairuddin MD ISA. Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: a review[J]. Front. Energy, 2020, 14(3): 545-569.
[4] Liang YIN, Yonglin JU. Review on the design and optimization of hydrogen liquefaction processes[J]. Front. Energy, 2020, 14(3): 530-544.
[5] Jiahui JIN, Lei WANG, Mingkai FU, Xin LI, Yuanwei LU. Thermodynamic assessment of hydrogen production via solar thermochemical cycle based on MoO2/Mo by methane reduction[J]. Front. Energy, 2020, 14(1): 71-80.
[6] Xiaoping CHEN, Jihai XIONG, Jinming SHI, Song XIA, Shuanglin GUI, Wenfeng SHANGGUAN. Roles of various Ni species on TiO2 in enhancing photocatalytic H2 evolution[J]. Front. Energy, 2019, 13(4): 684-690.
[7] Tongbin ZHAO, Jiabo ZHANG, Dehao JU, Zhen HUANG, Dong HAN. Exergy losses in premixed flames of dimethyl ether and hydrogen blends[J]. Front. Energy, 2019, 13(4): 658-666.
[8] Seyed Saeed HOSEINI, Mohammad Amin SOBATI. Performance and emission characteristics of a diesel engine operating on different water in diesel emulsion fuels: optimization using response surface methodology (RSM)[J]. Front. Energy, 2019, 13(4): 636-657.
[9] Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Hossein GOUDARZI. Feasibility of using wind turbines for renewable hydrogen production in Firuzkuh, Iran[J]. Front. Energy, 2019, 13(3): 494-505.
[10] Mostafa REZAEI, Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Mozhgan MOMENI. Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran[J]. Front. Energy, 2019, 13(3): 539-550.
[11] Shuo XU, Jing LIU. Metal-based direct hydrogen generation as unconventional high density energy[J]. Front. Energy, 2019, 13(1): 27-53.
[12] Maurizio FACCIO, Mauro GAMBERI, Marco BORTOLINI, Mojtaba NEDAEI. State-of-art review of the optimization methods to design the configuration of hybrid renewable energy systems (HRESs)[J]. Front. Energy, 2018, 12(4): 591-622.
[13] Xiaohe YAN, Xin ZHANG, Chenghong GU, Furong LI. Power to gas: addressing renewable curtailment by converting to hydrogen[J]. Front. Energy, 2018, 12(4): 560-568.
[14] Han HAO, Zhexuan MU, Zongwei LIU, Fuquan ZHAO. Abating transport GHG emissions by hydrogen fuel cell vehicles: Chances for the developing world[J]. Front. Energy, 2018, 12(3): 466-480.
[15] Yiji LU, Anthony Paul ROSKILLY, Long JIANG, Longfei CHEN, Xiaoli YU. Analysis of a 1 kW organic Rankine cycle using a scroll expander for engine coolant and exhaust heat recovery[J]. Front. Energy, 2017, 11(4): 527-534.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed