Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2020, Vol. 14 Issue (4) : 740-758    https://doi.org/10.1007/s11708-018-0558-y
RESEARCH ARTICLE
Peak CO2 emission in the region dominated by coal use and heavy chemical industries: a case study of Dezhou city in China
Sheng ZHOU1, Maosheng DUAN1, Zhiyi YUAN1, Xunmin OU2()
1. Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China
2. Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China; China Automotive Energy Research Center, Tsinghua University, Beijing 100084, China
 Download: PDF(1371 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper studies the pathways of peaking CO2 emissions of Dezhou city in China, by employing a bottom-up sector analysis model and considering future economic growth, the adjustment of the industrial structure, and the trend of energy intensity. Two scenarios (a business-as-usual (BAU) scenario and a CO2 mitigation scenario (CMS)) are set up. The results show that in the BAU scenario, the final energy consumption will peak at 25.93 million tons of coal equivalent (Mtce) (16% growth versus 2014) in 2030. In the CMS scenario, the final energy will peak in 2020 at 23.47 Mtce (9% lower versus peak in the BAU scenario). The total primary energy consumption will increase by 12% (BAU scenario) and decrease by 3% (CMS scenario) in 2030, respectively, compared to that in 2014. In the BAU scenario, CO2 emission will peak in 2025 at 70 million tons of carbon dioxide (MtCO2), and subsequently decrease gradually in 2030. In the CMS scenario, the peak has occurred in 2014, and 60 MtCO2 will be emitted in 2030. Active policies including restructuring the economy, improving energy efficiency, capping coal consumption, and using more low-carbon /carbon free fuel are recommended in Dezhou city peaked CO2 emission as early as possible.

Keywords carbon dioxide emission      energy consumption      peak CO2 emission      low-carbon transition      Dezhou city      China     
Corresponding Author(s): Xunmin OU   
Just Accepted Date: 20 March 2018   Online First Date: 23 April 2018    Issue Date: 21 December 2020
 Cite this article:   
Sheng ZHOU,Maosheng DUAN,Zhiyi YUAN, et al. Peak CO2 emission in the region dominated by coal use and heavy chemical industries: a case study of Dezhou city in China[J]. Front. Energy, 2020, 14(4): 740-758.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0558-y
https://academic.hep.com.cn/fie/EN/Y2020/V14/I4/740
Fig.1  Framework of the quantitative analysis model in this study
Sectori Type Subsector i, j
j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
i = 1 Industrial Steel Cement Chemical Petroleum Paper Other sectors
i = 2 Building Public Residential - - - -
i = 3 Transportation Passenger Freight Private vehicle - - -
Tab.1  Final energy demand sectors and subsectors
Item BAU CMS
2005 2010 2014 2020 2025 2030 2020 2025 2030
Population/million 5.58 5.70 5.83 6.05 5.99 5.93 Same to BAU
Urbanization rate/% 38.26 42.92 48.45 58.41 66.70 75.00
GDP (2014 price)/billion 87.00 167.70 259.61 434.14 605.03 788.08
Share of GDP (Primary industry)/% 16.38 12.70 10.42 7.59 6.30 5.51 7.65 6.36 5.52
Share of GDP (Secondary industry)/% 54.15 54.26 50.31 53.08 53.24 51.98 49.93 46.76 42.12
Share of GDP (Tertiary industry)/% 29.47 33.04 39.26 39.32 40.46 42.51 42.42 46.88 52.37
Tab.2  Social and economic data in two scenarios in future Dezhou city [6,10]
2005 2010 2014 2020 2025 2030
Steel/(tce?t1) 0.76 0.72 0.69 0.66 0.65 0.64
Cement/(tce?t1) 0.10 0.09 0.07 0.07 0.07 0.06
Petroleum/(tce?t1) 0.23 0.22 0.21 0.20 0.19 0.18
Chemical/(tce?t1) 3.99 3.42 3.41 3.29 3.18 3.07
Paper/(tce?t1) 0.61 0.45 0.44 0.43 0.42 0.40
Electricity/(gce?kWh 1) 370 333 319 307 297 287
Other/(103tce?CNY1) 4.9 4.0 2.6 2.0 1.6 1.2
Public/(kgce?m2) 21.04 21.41 25.07 29.29 31.41 33.52
Residential/(kgce?m2) 19.07 18.04 18.16 20.07 21.03 21.99
Passenger/
(104toe?(person·km) 1)
2.26 2.11 1.96 1.81
Freight/
(104toe?(tons·km) 1)
0.63 0.59 0.55 0.51
Private vehicle/(toe?car1) 0.96 0.90 0.83 0.77
Tab.3  Energy intensity of key productions/subsectors for BAU and CMS scenarios [6,8,10]
Fig.2  Energy structure by sector for Dezhou city in 2014
BAU CMS
2005 2010 2014 2020 2025 2030 2020 2025 2030
Steel/Mt 1.07 2.70 4.49 4.49 4.49 4.49 4.16 3.88 3.60
Cement/Mt 4.14 4.66 4.30 4.30 4.30 4.30 3.98 3.71 3.44
Petroleum/Mt 0.38 1.09 2.42 2.42 2.42 2.42 2.24 2.09 1.94
Chemical/Mt 1.20 1.48 2.11 2.11 2.11 2.11 1.95 1.82 1.69
Paper/Mt 1.44 1.89 1.20 1.20 1.20 1.20 1.11 1.04 0.96
Electricity/TWh 17.0 17.9 17.4 17.4 17.4 17.4 16.8 16.2 15.7
Public building/km2 17 17 19 22 23 24 22 22 23
Residential building/km2 170 190 212 242 240 237 240 232 225
Passenger transport/(109? (person?km)1) 5.7 7.2 8.4 9.1 9.9 8.3 8.9 9.4
Freight transport/(109? (tons?km)1) 30.3 40.9 46.3 49.2 52.1 45.9 47.7 49.5
Private vehicle/thousand 220 380 580 900 1160 1420 890 1130 1350
Tab.4  Output of key productions/subsectors [6,7,10]
Fig.3  Final energy demand by sector in BAU (left) and CMS (right) scenarios
Fig.4  Final energy demand by fuel type in BAU (left) and CMS (right) scenarios
Fig.5  Energy demand of industrial sectors in BAU (left) and CMS (right) scenarios
Fig.6  Energy demand of the building sector in BAU (left) and CMS (right) scenarios
Fig.7  Energy demand of the transport sector in BAU (left) and CMS (right) scenarios
Fig.8  Electricity demand and supply in BAU (left) and CMS (right) scenarios
Fig.9  Total primary energy consumption in BAU (left) and CMS (right) scenarios
Fig.10  CO2 emissions under the two scenarios in BAU (left) and CMS (right) scenarios (CO2 emssion refers to that embodied in the electricity import or from coal, oil and gas.)
Fig.11  CO2 emissions per capita (left axis) and per GDP (right axis)
Fig.12  CO2 reduction contribution of different factors (2014 – 2030)
Item BAU CMS
2005 2010 2014 2020 2025 2030 2020 2025 2030
Industry
Sub-total/Mtce 7.18 11.19 15.16 15.59 15.91 15.67 14.46 13.79 12.60
Coal/Mtce 5.89 8.81 12.06 11.89 11.98 11.78 11.01 10.35 9.44
Oil/Mtce 0.36 0.62 0.80 0.81 0.75 0.66 0.75 0.66 0.54
Gas/Mtce 0.02 0.14 0.24 0.32 0.38 0.41 0.30 0.33 0.33
Electricity/Mtce 0.91 1.62 2.06 2.57 2.81 2.82 2.39 2.45 2.29
Building
Sub-total/Mtce 4.63 4.92 5.60 6.95 7.22 7.48 6.88 7.00 7.10
Coal/Mtce 3.56 4.08 4.69 5.40 5.39 5.39 5.34 5.23 5.12
Oil/Mtce 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gas/Mtce 0.35 0.22 0.25 0.42 0.49 0.55 0.42 0.48 0.53
Electricity/Mtce 0.73 0.62 0.66 1.13 1.33 1.53 1.12 1.29 1.46
Transport
Sub-total/Mtce 1.09 1.20 1.60 2.15 2.50 2.79 2.12 2.43 2.65
Coal/Mtce 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Oil/Mtce 0.96 1.05 1.41 1.89 2.20 2.45 1.87 2.14 2.33
Gas/Mtce 0.09 0.10 0.13 0.17 0.20 0.22 0.17 0.20 0.21
Electricity/Mtce 0.04 0.05 0.06 0.09 0.10 0.11 0.09 0.10 0.11
Final energy demand total
Sub-total/Mtce 12.90 17.31 22.36 24.69 25.63 25.93 23.47 23.21 22.35
Coal/Mtce 9.45 12.89 16.75 17.28 17.37 17.17 16.35 15.58 14.56
Oil/Mtce 1.32 1.68 2.21 2.70 2.95 3.11 2.62 2.79 2.86
Gas/Mtce 0.46 0.46 0.61 0.92 1.08 1.19 0.89 1.00 1.07
Electricity/Mtce 1.68 2.28 2.79 3.79 4.24 4.47 3.60 3.84 3.85
Power
Sub-total of fuel input/Mtce 6.29 5.97 5.55 5.34 5.17 5.00 5.14 4.81 4.50
Coal/Mtce 6.13 5.81 5.40 5.20 5.03 4.86 5.01 4.69 4.38
Oil/Mtce 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gas/Mtce 0.16 0.16 0.15 0.14 0.14 0.13 0.13 0.13 0.12
Total fossil generation/TWh 17.01 17.93 17.40 17.40 17.40 17.40 16.75 16.20 15.66
Import electricity/TWh –3.33 0.64 4.43 11.75 14.08 15.49 9.99 11.62 11.40
Renewable electricity/TWh 0.86 1.72 3.01 3.44 2.58 3.44 4.30
  Table A1 Final energy demand and power sector energy consumption in Dezhou city
Item BAU CMS
2005 2010 2014 2020 2025 2030 2020 2025 2030
Primary energy consumption/Mtce 17.11 21.07 25.78 27.89 28.66 28.79 26.55 26.04 24.92
Coal/Mtce 15.58 18.70 22.15 22.49 22.40 22.03 21.36 20.26 18.94
Oil/Mtce 1.32 1.68 2.22 2.70 2.95 3.11 2.62 2.79 2.87
Gas/Mtce 0.62 0.62 0.76 1.06 1.21 1.32 1.02 1.13 1.19
Renewable electricity/Mtce 0.00 0.00 0.11 0.21 0.37 0.42 0.32 0.42 0.53
Import electricity/Mtce -0.41 0.08 0.54 1.44 1.73 1.90 1.23 1.43 1.40
Share/%
Coal/% 91.1 88.7 85.9 80.6 78.2 76.5 80.4 77.8 76.0
Oil/% 7.7 8.0 8.6 9.7 10.3 10.8 9.9 10.7 11.5
Gas/% 3.6 2.9 2.9 3.8 4.2 4.6 3.9 4.3 4.8
Renewable electricity/% 0.4 0.8 1.3 1.5 1.2 1.6 2.1
Import electricity/% -2.4 0.4 2.1 5.2 6.0 6.6 4.6 5.5 5.6
CO2 emission/Mt 45.66 55.22 66.35 69.49 70.37 70.04 66.15 63.93 60.64
Per capita emission/tCO2 8.26 9.69 11.80 11.89 10.98 10.07 11.21 9.94 8.66
Per 1000 CNY (GDP) emission/tCO2 50.4 32.3 25.5 16.0 12.4 08.8 15.3 11.5 07.7
  Table A2 Primary energy consumption and CO2 emission in Dezhou city
1 NBSC (National Bureau of Statistics of China). China Statistical Yearbook 2016. Beijing: China Statistics Press, 2016
2 NBSC (National Bureau of Statistics of China). China Energy Statistical Yearbook 2015. Beijing: China Statistics Press, 2015
3 M Esteban, Q Zhang, A Utama. Estimation of the energy storage requirement of a future 100% renewable energy system in Japan. Energy Policy, 2012, 47: 22–31
https://doi.org/10.1016/j.enpol.2012.03.078
4 SCC (State Council of P.R. China). Enhanced Action on Climate Change — China’s Intended Nationally Determined Contributions. 2016–12–27,
5 SPBS (Shandong Provincial Bureau of Statistics). Shandong Economic Statistical Yearbook. Beijing: China Statistics Press, 2016
6 DMBS (Dezhou Municipal Bureau of Statistics). Dezhou Statistical Yearbook. Beijing: China Statistics Press, 2015
7 DRC (Dezhou city development and reform commission). Development of New Energy and Renewable Energy in Dezhou City, Shandong Province during “13th Five-Year Plan (2016–2020)”. Dezhou, China, 2016
8 DRC (Dezhou city development and reform commission). Dezhou City Economic and Social Development Program during “13th Five-Year”. Dezhou, China, 2016
9 DRC (Dezhou city development and reform commission). Dezhou City Low-Carbon Development Planning during “12th Five-Year Plan”. Dezhou, China, 2013
10 THU (Tsinghua University). A Study on Low-Carbon Cities in Dezhou City, Shandong Province. Beijing, China, 2017
11 NDRC (National Development and Reform Commission). Revolutionary Innovation and Action Plan of the Energy Technologies. 2016–06,
12 W Chen, Z Wu, J He, P Gao, S Xu. Carbon emission control strategies for China: a comparative study with partial and general equilibrium versions of the China MARKAL model. Energy, 2007, 32(1): 59–72
https://doi.org/10.1016/j.energy.2006.01.018
13 THU (Tsinghua University). Research on China’s Peak Emissions of Greenhouse Gases. Beijing, China, 2016
14 K Jiang, X Hu, X Zhuang, Q Liu, S Zhu. China energy demand and emission scenarios by 2050. Climate Change Research Review, 2008, 4(5): 296–302
15 S Zhou, G P Kyle, S Yu, L E Clarke, J Eom, P Luckow, V Chaturvedi, X Zhang, J A Edmonds. Energy use and CO2 emissions of China’s industrial sector from a global perspective. Energy Policy, 2013, 58: 284–294
https://doi.org/10.1016/j.enpol.2013.03.014
16 P Lynn, N Khanna, N Zhou, D Fridley, A Hasanbeigi, H Lu, W Feng. Reinventing fire: China – the role of energy efficiency in China’s roadmap to 2050. In: Proceedings of ECEEE Summer Study, Denver, 2017
17 N Khanna, D Fridley, L Hong. China’s pilot low-carbon city initiative: a comparative assessment of national goals and local plans. Sustainable Cities and Society, 2014, 12: 110–121
https://doi.org/10.1016/j.scs.2014.03.005
18 IEA (International Energy Agency). World Energy Outlook 2016. 2016,
19 X Pan, W Chen, L E Clarke, L N Wang, G Liu. China’s energy system transformation towards the 2°C goal: implications of different effort-sharing principles. Energy Policy, 2013, 103: 116–126
20 J Yuan, Y Xu, X Zhang, Z Hu, M Xu. China’s 2020 clean energy target: consistency, pathways and policy implications. Energy Policy, 2014, 65: 692–700
https://doi.org/10.1016/j.enpol.2013.09.061
21 J Yuan, Y Xu, Z Hu, C Zhao, M Xiong, J Guo. Peak energy consumption and CO2 emissions in China. Energy Policy, 2014, 68: 508–523
https://doi.org/10.1016/j.enpol.2014.01.019
22 D Zhang, V J Karplus, C Cassisa, X Zhang. Emissions trading in China: progress and prospects. Energy Policy, 2014, 75: 9–16
https://doi.org/10.1016/j.enpol.2014.01.022
23 H Li, Y Wei, Z Mi. China’s carbon flow: 2008 – 2012. Energy Policy, 2015, 80: 45–53
https://doi.org/10.1016/j.enpol.2015.01.025
24 X Hong. The calculation of carbon emissions of Shandong province and the comparison with the national average. Energy Procedia, 2011, 5: 1514–1518
https://doi.org/10.1016/j.egypro.2011.03.259
25 L Ren, W Wang, J Wang, R Liu. Analysis of energy consumption and carbon emission during the urbanization of Shandong province, China. Journal of Cleaner Production, 2015, 103: 534–541
https://doi.org/10.1016/j.jclepro.2014.08.098
26 L Ren, W Wang. Analysis of existing problems and carbon emission reduction in Shandong’s iron and steel industry. Energy Procedia, 2011, 5: 1636–1641
https://doi.org/10.1016/j.egypro.2011.03.279
27 R Zhou, S Li. A study on the development of low-carbon economy in Shandong province-based on empirical analysis on the influence factor of carbon emission. Energy Procedia, 2011, 5: 2152–2159
https://doi.org/10.1016/j.egypro.2011.03.372
28 A Oberheitmann. Development of a low carbon economy in Wuxi city. American Journal of Climate Change, 2012, 1(02): 64–103
https://doi.org/10.4236/ajcc.2012.12007
29 Z Yang, Z Ke. Analysis of energy consumption in Shandong province based on complete decomposition model. Energy Procedia, 2011, 5: 1647–1653
https://doi.org/10.1016/j.egypro.2011.03.281
30 Z Jiang, Y Dai, X Luo, G Liu, H Wang, H Zheng, Z Wang. Assessment of bioenergy development potential and its environmental impact for rural household energy consumption: a case study in Shandong, China. Renewable & Sustainable Energy Reviews, 2017, 67: 1153–1161
https://doi.org/10.1016/j.rser.2016.09.085
31 W Li, G Song, M Beresford, B Ma. China’s transition to green energy systems: the economics of home solar water heaters and their popularization in Dezhou city. Energy Policy, 2011, 39(10): 5909–5919
https://doi.org/10.1016/j.enpol.2011.06.044
32 D Connolly, H Lund, B V Mathiesen, M Leahy. A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy, 2010, 87(4): 1059–1082
https://doi.org/10.1016/j.apenergy.2009.09.026
33 HURCB (Housing urban and rural construction bureau). Urban System Planning of Shandong Province (2011–2030). 2015–11–27,
34 THU (Tsinghua University). A Comprehensive Evaluation Model Construction and Simulation of Climate Change and Key Technologies. Beijing, China, 2016
35 THU (Tsinghua University). China’s Greenhouse Gas Emissions Roadmap in 2050. Beijing, China, 2016
36 H S Eggleston, L Buendia, K Miwa, T Ngara, K Tanabe. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2015–7, available at the website of ipcc-nggip.iges.or.jp
37 BERC (Building Energy Research Center, Tsinghua University). 2014 Annual Report on China Building Energy Efficiency. Beijing, China, 2015
38 H Xu, M Wang, X Zhang. Civil building energy consumption intensity analysis in Shandong province cities and towns. Building Energy Conservation, 2015, 10: 115–118 (in Chinese)
39 L Yang, Z Li. Technology advance and the carbon dioxide emission in China – empirical research based on the rebound effect. Energy Policy, 2017, 101: 150–161
https://doi.org/10.1016/j.enpol.2016.11.020
40 MOT (The Ministry of Transport). 2014 Statistical Bulletin of Transportation Sector. 2015–04–30, (in Chinese)
41 Ministry of Environmental Protection. Work plan for the prevention and control of air pollution in the Beijing-Tianjin-Hebei region and surrounding areas in 2017. Beijing, China, 2017
[1] Zhong HUANG, Lei DENG, Defu CHE. Development and technical progress in large-scale circulating fluidized bed boiler in China[J]. Front. Energy, 2020, 14(4): 699-714.
[2] Jitan WU, Yonglin JU. Comprehensive comparison of small-scale natural gas liquefaction processes using brazed plate heat exchangers[J]. Front. Energy, 2020, 14(4): 683-698.
[3] Liang YIN, Yonglin JU. Review on the design and optimization of hydrogen liquefaction processes[J]. Front. Energy, 2020, 14(3): 530-544.
[4] Junjie LI, Yajun TIAN, Xiaohui YAN, Jingdong YANG, Yonggang WANG, Wenqiang XU, Kechang XIE. Approach and potential of replacing oil and natural gas with coal in China[J]. Front. Energy, 2020, 14(2): 419-431.
[5] Xinfang WANG, Ming MENG. Understanding high-emitting households in the UK through a cluster analysis[J]. Front. Energy, 2019, 13(4): 612-625.
[6] Hailin WANG, Jiankun HE. China’s pre-2020 CO2 emission reduction potential and its influence[J]. Front. Energy, 2019, 13(3): 571-578.
[7] Han HAO, Zhexuan MU, Zongwei LIU, Fuquan ZHAO. Abating transport GHG emissions by hydrogen fuel cell vehicles: Chances for the developing world[J]. Front. Energy, 2018, 12(3): 466-480.
[8] Hancheng DAI, Yang XIE, Haibin ZHANG, Zhongjue YU, Wentao WANG. Effects of the US withdrawal from Paris Agreement on the carbon emission space and cost of China and India[J]. Front. Energy, 2018, 12(3): 362-375.
[9] Ping JIANG, Hongjia DONG, Yun ZHU, Adila ALIMUJIANG, Zhenhua ZHANG, Weichun MA. Individual environmental behavior: A key role in building low-carbon communities in China[J]. Front. Energy, 2018, 12(3): 456-465.
[10] Xiangwan DU. Tackling climate change and promoting the energy revolution[J]. Front. Energy, 2018, 12(3): 338-343.
[11] Junlan YANG, Jiabao TANG. Influence of envelope insulation materials on building energy consumption[J]. Front. Energy, 2017, 11(4): 575-581.
[12] Jincheng XING,Junjie CHEN,Jihong LING. Energy consumption of 270 schools in Tianjin, China[J]. Front. Energy, 2015, 9(2): 217-230.
[13] Shangguang YANG,Chunlan WANG,Kevin LO,Mark WANG,Lin LIU. Quantifying and mapping spatial variability of Shanghai household carbon footprints[J]. Front. Energy, 2015, 9(1): 115-124.
[14] Jihong LING,Haitao MA,HuiZhu YU,Jincheng XING. Quantitative research of incentive effects of heat-metering policy on energy-saving behavior in Tianjin[J]. Front. Energy, 2014, 8(4): 504-512.
[15] Ertugrul YILDIRIM. Energy use, CO2 emission and foreign direct investment: Is there any inconsistence between causal relations?[J]. Front. Energy, 2014, 8(3): 269-278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed