Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2020, Vol. 14 Issue (3) : 620-634    https://doi.org/10.1007/s11708-019-0619-x
RESEARCH ARTICLE
Does financial development lower energy intensity?
Philip Kofi ADOM1(), Michael Owusu APPIAH2, Mawunyo Prosper AGRADI3
1. Department of Development Policy, School of Public Service and Governance, Ghana Institute of Management and Public Administration (GIMPA), Achimota, Ghana
2. Department of Finance, Business School, University of Cape Coast, Accra, Ghana
3. Department of Banking and Finance, University of Professional Studies, Accra, Ghana
 Download: PDF(302 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The growth-induced effects of financial development have been well-established in the empirical literature, as well as the significance of financial development to energy demand behavior. However, the empirical evidence on the relationship between financial development and energy intensity remains sparse in the literature. Given the multifaceted nature of the effects of financial development, the proposed relationship seems a complex one and warrants an empirical investigation. Using the case of Ghana, this study provides an empirical answer to the question: does financial development lower energy intensity? To provide solid grounds for either rejection or acceptance of the null hypothesis, this study performed several robustness checks. Generally, the evidence revealed that financial development lowers energy intensity. Further, the results revealed that the price of energy, trade liberalization and industry structure play significant roles. These results have important implications for the design of macro energy efficiency policies and the creation of a ‘Green Bank’.

Keywords financial development      energy intensity      energy efficiency      Ghana     
Corresponding Author(s): Philip Kofi ADOM   
Online First Date: 22 April 2019    Issue Date: 14 September 2020
 Cite this article:   
Philip Kofi ADOM,Michael Owusu APPIAH,Mawunyo Prosper AGRADI. Does financial development lower energy intensity?[J]. Front. Energy, 2020, 14(3): 620-634.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-019-0619-x
https://academic.hep.com.cn/fie/EN/Y2020/V14/I3/620
Variables ADF_GLS Phillip-Perron Perron unit root test with structural break
Constant Constant & trend Constant Constant & trend Constant Trend Constant & trend
lnEI - 1.334 - 1.130 1.922 - 2.565 - 5.079c(1999) - 2.878(1994) - 4.085(1999)
ΔlnEI - 1.777c - 6.836a - 6.003a - 6.882a - 7.947a(2000) - 7.919a(2003) - 7.979a(2003)
lnPE 0.754 - 2.846 0.585 - 4.078b - 8.966a(1983) - 4.518c(1994) - 9.109a(1983)
ΔlnPE - 8.179a - 4.271a - 12.338a —— —— —— ——
lnPO - 1.574 - 1.820 - 1.707 - 2.103 - 3.313(2003) - 2.726(1996) - 2.853(2004)
ΔlnPO - 6.385a - 6.582a - 6.447a - 6.465a - 7.343a(1998) - 7.180a(1983) - 7.392a(1998)
lnFD(PS) - 0.770 - 1.567 - 0.720 - 2.212 - 3.524(1977) - 3.632(1981) - 4.290(1983)
ΔlnFD(PS) - 4.286a - 5.173a - 6.148a - 6.500a - 8.025a(1983) - 7.525a(1989) - 7.908a(1991)
lnFD(PSBK) - 0.815 - 1.579 - 0.768 - 2.212 - 3.458(1977) - 3.534(1981) - 4.198(1983)
ΔlnFD(PSBK) - 4.294a - 5.186a - 6.168a - 6.501a - 8.035a(1983) - 7.537a(1989) - 7.918a(1991)
lnFD(M2) - 1.083 - 1.744 - 1.322 - 1.884 - 3.082(1980) - 3.544(1980) - 3.969(1991)
ΔlnFD(M2) - 6.826a - 6.863a - 6.760a - 6.714a - 7.761a(1983) - 7.317a(1979) - 8.534a(1985)
lnFD(M2_R) - 1.678 - 2.569 - 3.278b - 3.059 - 3.144(1981) - 2.826(1981) - 3.227(1981)
ΔlnFD(M2_R) - 6.879a - 7.047a —— - 8.047a - 5.678b(2000) - 5.157b(1990) - 5.636b(1986)
lnTOP - 1.574 - 2.94 - 1.137 - 2.251 - 3.031(1985) - 2.998(2003) - 4.683(1983)
ΔlnTOP - 4.068a - 4.973a - 4.492a - 4.343a - 6.874a(1982) - 4.965a(1986) - 7.040a(1982)
lnIVA 0.463 - 0.156 - 0.160 - 0.873 - 3.863(1992) - 3.474(1979) - 4.643(1983)
ΔlnIVA - 3.644a - 4.187a - 5.357a - 5.537a - 5.833a(1982) - 4.805a(1987) - 5.889a(1982)
Tab.1  Unit root test
Model F-stats 1% significance 5% significance 10% significance
I(0) I(1) I(0) I(1) I(0) I(1)
4.13 5.00 3.10 3.87 2.63 3.35
F(EI|PE, PO) 9.080
3.65 4.66 2.79 3.67 2.37 3.20
F(EI|PE, PO,FD(PS)) 7.792
F(EI|PE, PO,FD(PSBK)) 7.774
F(EI|PE, PO,FD(M2)) 7.230
F(EI|PE, PO,FD(M2_R)) 7.090
F(EI|PE, PO, FD(INDEX)) 6.750
3.06 4.15 2.39 3.38 2.08 3.00
F(EI|PE, PO,FD(PS), TOP, IVA) 5.329
F(EI|PE, PO,FD(PSBK), TOP, IVA) 5.310
F(EI|PE, PO,FD(M2), TOP, IVA) 5.590
F(EI|PE, PO,FD(M2_R), TOP, VIA) 4.568
F(EI|PE, PO,FD(INDEX), TOP, IVA) 5.687
F(ELI|PE, PO,FD(PS), TOP, IVA) 8.216
F(ELI|PE, PO,FD(PSBK), TOP, IVA) 8.227
F(ELI|PE, PO,FD(M2), TOP, IVA) 7.873
F(ELI|PE, PO,FD(M2_R), TOP, VIA) 7.913
F(ELI|PE, PO,FD(INDEX), TOP, IVA) 7.431
Tab.2  Bounds cointegrating test
FMOLS Canonical cointegration Stock-Watson DOLS
M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6
lnPE 0.294a
(0.0327)
0.184a
(0.0210)
0.185a
(0.0209)
0.236a
(0.0299)
0.305a
(0.0312)
0.206a
(0.0267)
0.293a
(0.0323)
0.185a
(0.0188)
0.186a
(0.0188)
0.233a
(0.0280)
0.303a
(0.0307)
0.206a
(0.0238)
0.300a
(0.0209)
0.206a
(0.0305)
0.207a
(0.0299)
0.276a
(0.0349)
0.295a
(0.0216)
0.225a
(0.0221)
lnPO 0.099
(0.1204)
0.196a
(0.0592)
0.200a
(0.0599)
0.156c
(0.0869)
0.098
(0.1104)
0.183b
(0.0799)
0.098
(0.1149)
0.199a
(0.0590)
0.203a
(0.0594)
0.151c
(0.0851)
0.117
(0.1099)
0.185b
(0.0779)
0.166c
(0.0844)
0.153c
(0.0768)
0.158b
(0.0769)
0.212c
(0.1089)
0.067
(0.0768)
0.110
(0.0676)
lnFD(PS) 0.388a
(0.0644)
0.385a
(0.0599)
0.342a
(0.0938)
lnFD(PSBK) 0.394a
(0.0655)
0.390a
(0.0609)
0.347a
(0.0943)
lnFD(M2) 0.521b
(0.1993)
0.535b
(0.2033)
0.166
(0.2651)
lnFD(M2_R) 0.310b
(0.1387)
0.256b
(0.1010)
0.204c
(0.1198)
FD(INDEX) 0.140a
(0.0340)
0.140a
(0.0317)
0.109a
(0.0294)
Con 18.52a
(0.4967)
16.878a
(0.3432)
16.861a
(0.3469)
16.406c
(0.7599)
18.284a
(0.4660)
17.787a
(0.3462)
18.522a
(0.4703)
16.873a
(0.3558)
16.858a
(0.3591)
16.376a
(0.7692)
18.241a 17.780a
(0.0354)
18.276a
(0.3304)
17.302a
(0.5036)
17.279a
(0.5032)
17.448a
(0.8844)
18.513a
(0.3306)
18.222c
(0.3028)
Adj R-square 0.872 0.957 0.956 0.899 0.875 0.933 0.873 0.957 0.956 0.899 0.882 0.933 0.965 0.977 0.977 0.946 0.926 0.956
SER 0.216 0.125 0.127 0.192 0.214 0.156 0.216 0.125 0.127 0.192 0.207 0.156 0.104 0.092 0.092 0.137 0.165 0.126
SSR 2.013 0.660 0.675 1.551 1.923 1.025 2.002 0.658 0.673 1.548 1.807 1.026 0.250 0.261 0.262 0.580 0.955 0.574
LRV 0.211 0.048 0.049 0.110 0.177 0.091 0.211 0.048 0.049 0.110 0.177 0.091 0.042 0.037 0.036 0.075 0.072 0.043
Tab.3  Dependent variable: energy intensity
FMOLS Canonical Cointegration Stock-Watson DOLS
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
lnPE -0.171a
(0.0193)
-0.173a
(0.0192)
-0.175a
(0.0336)
-0.206a
(0.0320)
-0.174a
(0.0252)
-0.176a
(0.0189)
-0.179a
(0.0190)
-0.172a
(0.0351)
-0.201a
(0.0360)
-0.175a
(0.0257)
-0.153a
(0.0271)
-0.185a
(0.0219)
-0.169a
(0.0395)
-0.186a
(0.0381)
-0.175a
(0.0286)
lnPO -0.189a
(0.0573)
-0.192a
(0.0573)
-0.401a
(0.1039)
-0.409a
(0.0916)
-0.232a
(0.0794)
-0.180a
(0.0650)
-0.181a
(0.0649)
-0.423a
(0.1157)
-0.415a
(0.0944)
-0.253a
(0.0877)
-0.233c
(0.1326)
-0.172c
(0.0854)
-0.362a
(0.1158)
-0.383a
(0.0927)
-0.247b
(0.1101)
lnFD(PS) -0.413a
(0.0752)
-0.391a
(0.0754)
-0.338c
(0.1817)
lnFD(PSBK) -0.417a
(0.0760)
-0.395a
(0.0763)
-0.381a
(0.1087)
lnFD(M2) -0.191
(0.2399)
-0.118
(0.2839)
-0.145
(0.2666)
lnFD(M2_R) -0.074
(0.0992)
-0.045
(0.0922)
-0.052
(0.1060)
FD(INDEX) -0.130a
(0.0382)
-0.109a
(0.0364)
-0.098c
(0.2729)
lnTOP -0.159
(0.1408)
-0.149
(0.1417)
-0.569b
(0.2297)
-0.497a
(0.2240)
-0.394b
(0.1831)
-0.133
(0.1834)
-0.118
(0.1854)
-0.615b
(0.2711)
-0.519c
(0.2818)
-0.429c
(0.2364)
-0.562
(0.3678)
-0.157
(0.2433)
-0.717b
(0.2814)
-0.684b
(0.2555)
-0.496c
(0.2838)
lnIVA 0.301
(0.1998)
0.285
(0.2000)
0.203
(0.3729)
0.064
(0.3246)
0.431
(0.2772)
0.242
(0.2244)
0.219
(0.2254)
0.223
(0.4270)
0.084
(0.3811)
0.399
(0.2991)
0.727b
(0.2575)
0.291
(0.2204)
0.450
(0.3906)
0.339
(0.3101)
0.490a
(0.2838)
Con -17.070a
(0.5051)
-17.061a
(0.5064)
-14.515a
(0.7857)
-15.002a
(0.7999)
-17.192a
(0.8064)
-17.094a
(0.6206)
-17.092a
(0.6216)
-14.516a
(0.7651)
-14.952a
(0.7554)
-16.876a
(0.8222)
- 16.724a
(1.3600)
-17.284a
(0.8577)
-15.012a
(0.9422)
-15.181a
(0.9554)
-16.951a
(1.3278)
Adj R-square 0.955 0.954 0.905 0.908 0.931 0.957 0.956 0.903 0.909 0.934 0.984 0.981 0.956 0.960 0.960
SER 0.129 0.130 0.186 0.183 0.159 0.126 0.127 0.188 0.182 0.156 0.075 0.085 0.127 0.121 0.105
SSR 0.664 0.677 1.384 1.344 1.011 0.634 0.645 1.414 1.330 0.971 0.095 0.208 0.469 0.425 0.322
LRV 0.027 0.027 0.077 0.073 0.048 0.027 0.027 0.077 0.073 0.046 0.009 0.014 0.032 0.028 0.023
Tab.4  Dependent variable: energy intensity
FMOLS Canonical cointegration Stock-Watson DOLS
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
lnPE -0.160a
(0.0300)
-0.163a
(0.0297)
-0.192a
(0.0419)
-0.150a
(0.0365)
-0.194a
(0.0317)
-0.165a
(0.0302)
-0.168a
(0.0302)
-0.195a
(0.0443)
-0.149a
(0.0409)
-0.166a
(0.0377)
-0.152a
(0.0466)
-0.155a
(0.0469)
-0.057
(0.0461)
-0.087b
(0.0389)
-0.116b
(0.0440)
lnPO -0.122
(0.0890)
-0.124
(0.0886)
-0.441a
(0.1296)
-0.358a
(0.1043)
-0.191c
(0.997)
-0.110
(0.1022)
-0.111
(0.1017)
-0.466a
(0.1461)
-0.366a
(0.1096)
-0.294b
(0.1286)
-0.332
(0.1956)
-0.317
(0.1932)
-0.425a
(0.1136)
-0.555a
(0.0851)
-0.485a
(0.1613)
lnFD(PS) -0.414a
(0.1168)
-0.410a
(0.1214)
-0.196
(0.2635)
lnFD(PSBK) -0.414a
(0.1175)
-0.411a
(0.1226)
-0.232
(0.2683)
lnFD(M2) 0.433
(0.2993)
0.527
(0.3587)
- 0.301
(0.2846)
lnFD(M2_R) 0.251b
(0.1131)
0.252b
(0.1233)
0.342a
(0.1163)
FD(INDEX) -0.056
(0.0480)
-0.021
(0.0606)
0.024
(0.0808)
lnTOP -0.384c
(0.2188)
-0.376c
(0.2192)
-0.649b
(0.2865)
-0.658b
(0.2552)
-0.537b
(0.2299)
-0.354
(0.2929)
-0.340
(0.2944)
-0.692c
(0.3518)
-0.693b
(0.3237)
-0.728b
(0.3563)
-0.685
(0.5618)
-0.614
(0.5997)
-1.459a
(0.2994)
-1.191a
(0.2514)
-1.321a
(0.4177)
lnIVA 0.894a
(0.3105)
0.877a
(0.3095)
0.126
(0.4650)
0.316
(0.3699)
0.694c
(0.3481
0.872b
(0.3727)
0.847b
(0.3722)
0.156
(0.5400)
0.381
(0.4468)
0.678
(0.4743)
0.866c
(0.4364)
0.839c
(0.4383)
1.401a
(0.4014)
0.765b
(0.2942)
1.067a
(0.3772)
Con -18.338a
(0.7847)
-18.323a
(0.7833)
-15.954a
(0.9999)
-15.560a
(0.9114)
-17.810a
(1.0126)
-18.464a
(0.9631)
-18.457a
(0.9612)
-16.076a
(0.9240)
-15.579a
(0.8799)
-16.486a
(1.2627)
-16.652a
(2.0013)
-16.846a
(1.9932)
-13.901a
(1.0262)
-13.866a
(0.9483)
-14.391a
(2.1081)
Adj R-square 0.731 0.730 0.716 0.741 0.716 0.733 0.732 0.715 0.740 0.707 0.922 0.923 0.939 0.950 0.928
SER 0.311 0.312 0.317 0.306 0.320 0.310 0.311 0.317 0.307 0.325 0.165 0.164 0.146 0.132 0.158
SSR 3.879 3.891 4.027 3.745 4.095 3.854 3.864 4.114 3.758 4.225 0.625 0.017 0.490 0.404 0.575
LRV 0.065 0.064 0.070 0.095 0.076 0.065 0.064 0.119 0.095 0.107 0.039 0.039 0.021 0.017 0.027
Tab.5  Dependent variable: electrical energy intensity
Fig.1  Plot of estimated impact of financial development on energy intensity
1 P K Adom. Asymmetric impacts of the determinants of energy intensity in Nigeria. Energy Economics, 2015, 49: 570–580
https://doi.org/10.1016/j.eneco.2015.03.027
2 P K Adom, S Adams. Energy savings in Nigeria: Is there a way of escape from energy inefficiency? Renewable & Sustainable Energy Reviews, 2018, 81: 2421–2430
https://doi.org/10.1016/j.rser.2017.06.048
3 World Bank. Doing Business 2016: Measuring Regulatory Quality and Efficiency: Comparing Business Regulation for Domestic Firms in 189 Economies: a World Bank Group Flagship Report. 13th ed. Washington DC: World Bank, 2016
4 P Katrina. Examining energy efficiency issues in sub-Saharan Africa. Washington DC : US Agency for International Development, 2017
5 P K Adom. The transition between energy efficient and energy inefficient states in Cameroon. Energy Economics, 2016, 54: 248–262
https://doi.org/10.1016/j.eneco.2015.11.025
6 P K Adom. The long-run price sensitivity dynamics of industrial and residential electricity demand: the impact of deregulating electricity prices. Energy Economics, 2017, 62: 43–60
https://doi.org/10.1016/j.eneco.2016.12.010
7 P K Adom. Business cycle and Economic-wide energy intensity: the implications for energy conservation policy in Algeria. Energy, 2015a, 88(8): 334–350
https://doi.org/10.1016/j.energy.2015.05.051
8 World Economic and Financial Surveys. Regional economic outlook: sub-Saharan Africa. Washington DC: International Monetary Fund, 2016
9 C J Green. Financial Reform and Financial Development in Africa. Commissioned Proposal prepared for Africa Economic and Research Consortium (AERC), Nairobi, Kenya, 2013
10 P K Adom, M K Minlah, S Adams. The impact of renewable energy (hydro) on electricity prices in Ghana: a tale of the short- and long-run. Energy Strategy Reviews, 2018, 20: 163–178
https://doi.org/10.1016/j.esr.2018.03.002
11 F Allen, E Carletti, R Cull, et al. Resolving the African financial development gap: cross-country comparisons and a within-country study of Kenya. In: Edwards S, Johnson S, Weil D, eds. African Successes, Volume III: Modernization and Development. Chicago: University of Chicago Press, 2016
12 P Sadorsky. The impact of financial development on energy consumption in emerging economies. Energy Policy, 2010, 38(5): 2528–2535
https://doi.org/10.1016/j.enpol.2009.12.048
13 P Sadorsky. Financial development and energy consumption in Central and Eastern Europe frontier economies. Energy Policy, 2011, 39(2): 999–1006
https://doi.org/10.1016/j.enpol.2010.11.034
14 M Shahbaz, H H Lean. Does financial development increase energy consumption? The role of industrialization and urbanization in Tunisia. Energy Policy, 2012, 40: 473–479
https://doi.org/10.1016/j.enpol.2011.10.050
15 S C Chang. Effects of financial developments and income on energy consumption. International Review of Economics & Finance, 2015, 35: 28–44
https://doi.org/10.1016/j.iref.2014.08.011
16 F Islam, M Shahbaz, A U Ahmed, M M Alam. Financial development and energy consumption nexus in Malaysia: a multivariate time series analysis. Economic Modelling, 2013, 30: 435–441
https://doi.org/10.1016/j.econmod.2012.09.033
17 M Shahbaz, S Khan, M I Tahir. The dynamic link between energy consumption, economic growth, financial development and trade in China: fresh evidence from multivariate framework analysis. Energy Economics, 2013, 40: 8–21
https://doi.org/10.1016/j.eneco.2013.06.006
18 M K Mahalik, M S Babu, N Loganathan, M Shahbaz. Does financial development intensify energy consumption in Saudi Arabia? Renewable & Sustainable Energy Reviews, 2017, 75: 1022–1034
https://doi.org/10.1016/j.rser.2016.11.081
19 F Amuakwa-Mensah, R A Klege, P K Adom, A Amoah, E Hagan. Uneveiling the energy saving role of banking performance in sub-Saharan Africa. Energy Economics, 2018, 74: 828–842
https://doi.org/10.1016/j.eneco.2018.07.031
20 K Ahmed. Revisiting the role of financial development for energy-growth-trade nexus in BRICS economies. Energy, 2017, 128: 487–495
https://doi.org/10.1016/j.energy.2017.04.055
21 V Ulusoy, S Demiralay. Energy demand and stock market development in OECD countries: a panel data analysis. Renewable & Sustainable Energy Reviews, 2017, 71: 141–149
https://doi.org/10.1016/j.rser.2016.11.121
22 S R Paramati, M Ummalla, N Apergis. The effect of foreign direct investment and stock market growth on clean energy use across a panel of emerging markets economies. Energy Economics, 2016, 56: 29–41
https://doi.org/10.1016/j.eneco.2016.02.008
23 S Coban, M Topcu. The nexus between financial development and energy consumption in the EU: a dynamic panel data analysis. Energy Economics, 2013, 39: 81–88
https://doi.org/10.1016/j.eneco.2013.04.001
24 J Cornillie, S Fankhauser. The energy intensity of transition countries. Energy Economics, 2004, 26(3): 283–295
https://doi.org/10.1016/j.eneco.2004.04.015
25 K Fisher-Vanden, G H Jefferson, H M Liu, Q Tao. What is driving China’s decline in energy intensity? Resource and Energy Economics, 2004, 26(1): 77–97
https://doi.org/10.1016/j.reseneeco.2003.07.002
26 B Lin, M Moubarak. Estimation of energy saving potential in China’s paper industry. Energy, 2014, 65: 182–189
https://doi.org/10.1016/j.energy.2013.12.014
27 S F Gamtessa. The effects of energy price on energy intensity: evidence from Canadian manufacturing sector. Energy Efficiency, 2017, 10(1): 183–197
https://doi.org/10.1007/s12053-016-9448-5
28 F Song, X Zheng. What drives the change in China’s energy intensity: combining decomposition analysis and econometric analysis at the provincial level. Energy Policy, 2012, 51: 445–453
https://doi.org/10.1016/j.enpol.2012.08.044
29 P K Adom. Determinants of energy intensity in South Africa: testing for structural effects in parameters. Energy, 2015, 89: 334–346
https://doi.org/10.1016/j.energy.2015.05.125
30 P K Adom, F Amuakwa-Mensah. What drives the energy saving role of FDI and industrialization in East Africa? Renewable & Sustainable Energy Reviews, 2016, 65: 925–942
https://doi.org/10.1016/j.rser.2016.07.039
31 R J R Elliott, P Sun, T Zhu. The direct and indirect effect of urbanization on energy intensity: a province-level study for China. Energy, 2017, 123: 677–692
https://doi.org/10.1016/j.energy.2017.01.143
32 B Ma, Y Yu. Industrial structure, energy-saving regulations and energy intensity: evidence from Chinese cities. Journal of Cleaner Production, 2017, 141: 1539–1547
https://doi.org/10.1016/j.jclepro.2016.09.221
33 S Rafiq, R Salim, I Nielsen. Urbanization, openness, emissions and energy intensity: a study of increasingly urbanized emerging economies. Energy Economics, 2016, 56: 20–28
https://doi.org/10.1016/j.eneco.2016.02.007
34 P K Adom, P A Kwakwa. Effects of changing trade structure and technical characteristics of the manufacturing sector on energy intensity in Ghana. Renewable & Sustainable Energy Reviews, 2014, 35: 475–483
https://doi.org/10.1016/j.rser.2014.04.014
35 M Hübler, A Keller. Energy savings via FDI? Empirical evidence from developing countries. Environment and Development Economics, 2010, 15(1): 59–80
https://doi.org/10.1017/S1355770X09990088
36 P Sadorsky. Do urbanization and industrialization affect energy intensity in developing countries? Energy Economics, 2013, 37: 52–59
https://doi.org/10.1016/j.eneco.2013.01.009
37 K Sohag, R A Begum, S S A Abdullah, M Jaafar. Dynamics of energy use, technological innovation, economic growth and trade openness in Malaysia. Energy, 2015, 90: 1497–1507
https://doi.org/10.1016/j.energy.2015.06.101
38 J Yam. The impact of technology on financial development in East Asia. Journal of International Affairs, 1998, 51(2): 539–553
39 P C B Phillips, B E Hansen. Statistical inference in instrumental variables regression with I(1) processes. Review of Economic Studies, 1990, 57(1): 99–125
https://doi.org/10.2307/2297545
40 Y Park J. Canonical cointegrating regressions. Econometrica, 1992, 60(1): 119–143
https://doi.org/10.2307/2951679
41 J H Stock, M W Watson. A simple estimator of cointegrating vectors in higher order integrated systems. Econometrica, 1993, 61(4): 783–820
https://doi.org/10.2307/2951763
42 P K Adom, P A Kwakwa, A Amankwaa. The long-run effects of economic, demographic, and political indices on actual and potential CO2 emissions. Journal of Environmental Management, 2018b, 218: 516–526
https://doi.org/10.1016/j.jenvman.2018.04.090
43 P Perron. The great crash, the oil price shock, and the unit root hypothesis. Econometrica, 1989, 57(6): 1361–1401
https://doi.org/10.2307/1913712
44 M Brander, A Sood, C Wylie, et al. Electricity-specific emission factors for grid electricity. Technical paper in ecometrica, 2011
[1] FEP-19002-OF-AP_suppl_1 Download
[1] Pei LI, Guotian CAI, Yuntao ZHANG, Shangjun KE, Peng WANG, Liping GAO. Multi-objective optimal allocation strategy for the energy internet in Huangpu District, Guangzhou, China[J]. Front. Energy, 2020, 14(2): 241-253.
[2] Boqiang LIN, Hermas ABUDU. Impact of inter-fuel substitution on energy intensity in Ghana[J]. Front. Energy, 2020, 14(1): 27-41.
[3] Jihong LING,Luhui ZHAO,Jincheng XING,Zhiqiang LU. Statistical analysis of residential building energy consumption in Tianjin[J]. Front. Energy, 2014, 8(4): 513-520.
[4] Jincheng XING,Youli LI,Jihong LING,Huiyang YU,Liwen WANG. Method for rating energy performance of public buildings[J]. Front. Energy, 2014, 8(3): 379-385.
[5] Hamed MANSOORI, Parviz Rezvani MOGHADDAM, Rooholla MORADI. Energy budget and economic analysis in conventional and organic rice production systems and organic scenarios in the transition period in Iran[J]. Front Energ, 2012, 6(4): 341-350.
[6] Gaofeng CHEN, Xuejing ZHENG, Lin CONG. Energy efficiency and carbon dioxide emissions reduction opportunities in district heating source in Tianjin[J]. Front Energ, 2012, 6(3): 285-295.
[7] Minghui LI. Dynamic mechanism for the decline of China’s energy intensity during the 11th FYP (Five-Year Plan)[J]. Front Energ, 2011, 5(3): 237-249.
[8] Jiaping LIU, Xinrong ZHU, Liu YANG, Rongrong HU, . Exemplary project of green cave dwellings in Loess Plateau[J]. Front. Energy, 2010, 4(1): 122-130.
[9] Jiaping LIU, Rongrong HU, Liu YANG, Dalong LIU, Runshan WANG, . Energy efficiency of rural residential buildings: a sustainable case study in Daping Village, Sichuan Province[J]. Front. Energy, 2010, 4(1): 117-121.
[10] Yingxin ZHU, Borong LIN, Bin YUAN, . Low-cost green building practice in China: Library of Shandong Transportation College[J]. Front. Energy, 2010, 4(1): 100-105.
[11] Zhi ZHUANG, Yuguo LI, Xudong YANG, Bin CHEN, Jiaping LIU, . Thermal and energy analysis of a Chinese kang[J]. Front. Energy, 2010, 4(1): 84-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed