Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2022, Vol. 16 Issue (5) : 822-839    https://doi.org/10.1007/s11708-020-0677-0
RESEARCH ARTICLE
Micro-sized hydrothermal carbon supporting metal oxide nanoparticles as efficient catalyst for mono-dehydration of sugar alcohol
Cheng PAN1, Chao FAN1, Wanqin WANG2, Teng LONG3, Benhua HUANG1, Donghua ZHANG4(), Peigen SU1, Aqun ZHENG1, Yang SUN1()
1. Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
2. Department of Material Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
3. School of Material Science and Engineering, Xi’an University of Science and Technology, Xi’an 710600, China
4. School of Materials & Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
 Download: PDF(2058 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Most known catalytic dehydration of sugar alcohols such as D-sorbitol and D-mannitol can only produce di-dehydrated forms as major product, but mono-dehydrated products are also useful chemicals. Moreover, both di- and mono-dehydration demand a high temperature (150°C or higher), which deserves further attentions. To improve the mono-dehydration efficiency, a series of metal-containing hydrothermal carbonaceous materials (HTC) are prepared as catalyst in this work. Characterization reveals that the composition of preparative solution has a key influence on the morphology of HTC. In transformation of D-sorbitol, all HTC catalysts show low conversions in water regardless of temperature, but much better outputs are obtained in ethanol, especially at a higher temperature. When D-mannitol is selected as substrate, moderate to high conversions are obtained in both water and ethanol. On the other hand, high mono-dehydration selectivity is obtained for both sugar alcohols by using all catalysts. The origin of mono-dehydration selectivity and role of carbon component in catalysis are discussed in association with calculations. This study provides an efficient, mild, eco-friendly, and cost-effective system for mono-dehydration of sugar alcohols, which means a lot to development in new detergents or other fine chemicals.

Keywords hydrothermal carbon      morphology      catalyst      mono-dehydration      sugar alcohol     
Corresponding Author(s): Donghua ZHANG,Yang SUN   
Online First Date: 10 June 2020    Issue Date: 28 November 2022
 Cite this article:   
Cheng PAN,Chao FAN,Wanqin WANG, et al. Micro-sized hydrothermal carbon supporting metal oxide nanoparticles as efficient catalyst for mono-dehydration of sugar alcohol[J]. Front. Energy, 2022, 16(5): 822-839.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-020-0677-0
https://academic.hep.com.cn/fie/EN/Y2022/V16/I5/822
  Scheme 1 Synthesis of catalysts.
Fig.1  SEM images.
Sample C (1s) C (sp2)a) O (1s) N (1s) S (2p) Ti (2p) Al (2p) Ti/Alb)
C1 284.8 (80.5)c) 14.5 532.8 (15.5) 400.8 (3.2) 167.8 (0.8) d)
C2 285.8 (61.7) 0 529.8 (26.7) 399.8 (5.0) 458.8 (6.6)
C3 284.8 (75.9) 36.8 531.8 (17.9) 399.8 (0.2) 168.8 (1.6) 73.8 (4.4)
C4 284.8 (71.6) 27.1 531.8 (24.2) 458.8 (3.8) 73.8 (0.4) 9.5 / 1
C5 284.8 (79.0) 34.0 531.8 (20.1) 168.8 (0.2) 458.8 (0.5) 73.8 (0.2) 2.5 / 1
C6 284.8 (81.0) 6.9 532.8 (18.4) 458.8 (0.6)
C7 284.8 (69.1) 0 532.8 (22.0) 458.8 (0.7) 73.8 (8.2) 1 / 11.7
C8 284.8 (75.6) 40 531.8 (19.5) 457.8 (0.2) 72.8 (4.7) 1 / 23.5
Tab.1  Binding energy and atomic composition of element on sample surface
Fig.2  XPS measurement of Ti 2p region.
Fig.3  XPS measurement of Al 2p region.
Fig.4  Wide-angle XRD patterns.
Sample SBET/(m2·g–1)a) PVb)/(cm3·g–1) PVmicroc)/(cm3·g–1) PRd) re)/(g·cm–3) dSf)/nm dXRDg)/nm Acid amounth)/(mmol·g–1)
C1 3 0.005 0 49 1.1 1818 1.12
C2 61 0.123 0 35 1.5 65 7 0.67
C3 2 0.010 0.0001 126 1.2 2500 32 0.96
C4 127 0.114 0.0056 22 1.4 33 40 0.92
C5 86 0.087 0.0033 24 1.3 53 36 1.55
C6 123 0.147 0.0029 25 1.3 37 0.91
C7 196 0.266 0.0030 28 1.3 23 0.95
C8 187 0.247 0.0069 28 1.3 24 1.24
Tab.2  Textural properties of synthetic sample
Fig.5  Nitrogen adsorption-desorption isotherm and pore size distribution.
Fig.6  Curves of synthetic samples.
Entrya) Catalyst Temperature/°C Conversionb)/% Yield of 1,4-sorbitanc)/% Yield of isosorbided)/%
1 C2 20 15 11 4
2 80 14 9 5
3 C3 20 9 7 2
4 80 9 6 3
5 C4 20 11 8 3
6 80 9 7 2
7 C5 20 11 8 3
8 80 8 6 2
9 C6 20 9 9 0
10 80 62 60 2
11 C7 20 12 12 0
12 80 67 65 2
13 C8 20 31 31 0
14 80 63 60 3
Tab.3  Catalytic dehydration of D-sorbitol to fine chemicals in ethanol
Entrya) Catalyst Temperature/°C Conversionb)/% Yield of 1,4-mannitanc)/% Yield of isomannided)/%
15 C2 20 6 4 2
16 80 7 7 0
17 C3 20 4 3 1
18 80 9 9 0
19 C4 20 4 3 1
20 80 12 11 1
21 C5 20 69 64 5
22 80 64 61 3
23 C6 20 75 75 0
24 80 7 7 0
25 C7 20 77 75 2
26 80 9 9 0
27 C8 20 19 19 0
28 80 9 9 0
Tab.4  Catalytic dehydration of D-mannitol to fine chemicals in water
Entrya) Catalyst Temperature/°C Conversionb)/% Yield of 1,4-mannitanc)/% Yield of isomannided)/%
29 C6 20 13 4 9
30 80 91 91 0
31 C7 20 92 92 0
32 80 79 79 0
33 C8 20 11 11 0
34 80 78 78 0
Tab.5  Catalytic dehydration of D-mannitol to fine chemicals in ethanol
  Scheme 2 Proposed mechanism for catalytic dehydration of sugar alcohol.
Fig.7  Calculated contour of HOMO and LUMO for transition states TS1–TS7 in proposed mechanism.
1 Y Shen. Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Advances, 2014, 91: 49672–49722
https://doi.org/10.1039/C4RA06441K
2 D M Alonso, J Q Bond, J A Dumesic. Catalytic conversion of biomass to biofuels. Green Chemistry, 2010, (9): 1493–1513
https://doi.org/10.1039/c004654j
3 J Zhang, J Li, S B Wu, Y Liu. Advances in the catalytic production and utilization of sorbitol. Industrial & Engineering Chemistry Research, 2013, 2(34): 11799–11815
https://doi.org/10.1021/ie4011854
4 H Zhang, C C M Rindt, D M J Smeulders, S V Nedea. Nanoscale heat transfer in carbon nanotubes–sugar alcohol composite as heat storage materials. The Journal of Physical Chemistry C, 2016, 0(38): 21915–21924
https://doi.org/10.1021/acs.jpcc.6b05466
5 M Zhang, W Lai, L Su, G Wu. Effect of catalyst on the molecular structure and thermal properties of isosorbide polycarbonates. Industrial & Engineering Chemistry Research, 2018, 7(14): 4824–4831
https://doi.org/10.1021/acs.iecr.8b00241
6 D M Ćirin, M M Poša, V S Krstonošić. Interactions between sodium cholate or sodium deoxycholate and nonionic surfactant (Tween 20 or Tween 60) in aqueous solution. Industrial & Engineering Chemistry Research, 2012, 1(9): 3670–3676
https://doi.org/10.1021/ie202373z
7 N Baggett, M Mosihuzzaman, J M Webber. Synthesis of some monoacetals of 1,4-anhydro-D-mannitol. Carbohydrate Research, 1983, 116(1): 49–60
https://doi.org/10.1016/S0008-6215(00)90952-2
8 G Flèche, M Huchette. Isosorbide. Preparation, properties and chemistry. Starch, 1986, 38(1): 26–30
https://doi.org/10.1002/star.19860380107
9 O A Rusu, W F Hoelderich, H Wyart, M Ibert. Metal phosphate catalyzed dehydration of sorbitol under hydrothermal conditions. Applied Catalysis B: Environmental, 2015, 176–177: 139–149
https://doi.org/10.1016/j.apcatb.2015.03.033
10 Z C Tang, D H Yu, P Sun, H Li, H Huang. Phosphoric acid modified Nb2O5: a selective and reusable catalyst for dehydration of sorbitol to isosorbide. Bulletin of the Korean Chemical Society, 2010, 31(12): 3679–3683
https://doi.org/10.5012/bkcs.2010.31.12.3679
11 H Kobayashi, H Yokoyama, B Feng, A Fukuoka. Dehydration of sorbitol to isosorbide over H-beta zeolites with high Si/Al ratios. Green Chemistry, 2015, 17(5): 2732–2735
https://doi.org/10.1039/C5GC00319A
12 A Cubo, J Iglesias, G Morales, J A Melero, J Moreno, R Sánchez-Vázquez. Dehydration of sorbitol to isosorbide in melted phase with propyl-sulfonic functionalized SBA-15: influence of catalyst hydrophobization. Applied Catalysis A: General, 2017, 531: 151–160
https://doi.org/10.1016/j.apcata.2016.10.029
13 J Zhang, L Wang, F Liu, X Meng, J Mao, F S Xiao. Enhanced catalytic performance in dehydration of sorbitol to isosorbide over a superhydrophobic mesoporous acid catalyst. Catalysis Today, 2015, 242: 249–254
https://doi.org/10.1016/j.cattod.2014.04.017
14 J M Robinson, A M Wadle, M D Reno, R Kidd, S R Barrett Hinsz, J Urquieta. Solvent- and microwave-assisted dehydrations of polyols to anhydro and dianhydro polyols. Energy & Fuels, 2015, 29(10): 6529–6535
https://doi.org/10.1021/acs.energyfuels.5b02167
15 A Yamaguchi, N Hiyoshi, O Sato, M Shirai. Sorbitol dehydration in high temperature liquid water. Green Chemistry, 2011, 13(4): 873–881
https://doi.org/10.1039/c0gc00426j
16 H Yokoyama, H Kobayashi, J Hasegawa, A Fukuoka. Selective dehydration of mannitol to isomannide over Hβ zeolite. ACS Catalysis, 2017, 7(7): 4828–4834
https://doi.org/10.1021/acscatal.7b01295
17 T Okuhara. Water-tolerant solid acid catalysts. Chemical Reviews, 2002, 102(10): 3641–3666
https://doi.org/10.1021/cr0103569
18 A A Dabbawala, D K Mishra, G W Huber, J S Hwang. Role of acid sites and selectivity correlation in solvent free liquid phase dehydration of sorbitol to isosorbide. Applied Catalysis A: General, 2015, 492: 252–261
https://doi.org/10.1016/j.apcata.2014.12.014
19 I Polaert, M C Felix, M Fornasero, S Marcotte, J C Buvat, L Estel. A greener process for isosorbide production: kinetic study of the catalytic dehydration of pure sorbitol under microwave. Chemical Engineering Journal, 2013, 222: 228–239
https://doi.org/10.1016/j.cej.2013.02.043
20 A J Clancy, M K Bayazit, S A Hodge, N T Skipper, C A Howard, M S P Shaffer. Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chemical Reviews, 2018, 118(16): 7363–7408
https://doi.org/10.1021/acs.chemrev.8b00128
21 J S Lee, S I Kim, J C Yoon, J H Jang. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano, 2013, 7(7): 6047–6055
https://doi.org/10.1021/nn401850z
22 K Moothi, G S Simate, R Falcon, S E Iyuke, M Meyyappan. Carbon nanotube synthesis using coal pyrolysis. Langmuir, 2015, 31(34): 9464–9472
https://doi.org/10.1021/acs.langmuir.5b01894
23 L Zhu, X Zhao, Y Li, X Yu, C Li, Q Zhang. High-quality production of graphene by liquid-phase exfoliation of expanded graphite. Materials Chemistry and Physics, 2013, 137(3): 984–990
https://doi.org/10.1016/j.matchemphys.2012.11.012
24 S Ulstrup, P Lacovig, F Orlando, D Lizzit, L Bignardi, M Dalmiglio, M Bianchi, F Mazzola, A Baraldi, R Larciprete, P Hofmann, S Lizzit. Photoemission investigation of oxygen intercalated epitaxial graphene on Ru(0001). Surface Science, 2018, 678: 57–64
https://doi.org/10.1016/j.susc.2018.03.017
25 S Li, Z Jia, Z Li, Y Li, R Zhu. Synthesis and characterization of mesoporous carbon nanofibers and its adsorption for dye in wastewater. Advanced Powder Technology, 2016, 27(2): 591–598
https://doi.org/10.1016/j.apt.2016.01.024
26 M Salimi, S Balou, K Kohansal, K Babaei, A Tavasoli, M Andache. Optimizing the preparation of meso- and microporous canola stalk-derived hydrothermal carbon via response surface methodology for methylene blue removal. Energy & Fuels, 2017, 31(11): 12327–12338
https://doi.org/10.1021/acs.energyfuels.7b02440
27 R Zhao, Y Wang, X Li, B Sun, Y Li, H Ji, J Qiu, C Wang. Surface activated hydrothermal carbon-coated electrospun PAN fiber membrane with enhanced adsorption properties for herbicide. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2584–2592
https://doi.org/10.1021/acssuschemeng.6b00026
28 Y Qin, L Zhang, T An. Hydrothermal carbon-mediated Fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe(III). ACS Applied Materials & Interfaces, 2017, 9(20): 17115–17124
https://doi.org/10.1021/acsami.7b03310
29 P Zhang, X Song, C Yu, J Gui, J Qiu. Biomass-derived carbon nanospheres with turbostratic structure as metal-free catalysts for selective hydrogenation of o-chloronitrobenzene. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7481–7485
https://doi.org/10.1021/acssuschemeng.7b01280
30 R Bhattacharjee, A Datta. Role of carbon support for subnanometer gold-cluster-catalyzed disiloxane synthesis from hydrosilane and water. The Journal of Physical Chemistry C, 2017, 121(37): 20101–20112
https://doi.org/10.1021/acs.jpcc.7b04419
31 P Johari, V B Shenoy. Modulating optical properties of graphene oxide: role of prominent functional group. ACS Nano, 2011, 5(9): 7640–7647
https://doi.org/10.1021/nn202732t
32 M Ahmadi, H Mistry, B Roldan Cuenya. Tailoring the catalytic properties of metal nanoparticles via support interactions. The Journal of Physical Chemistry Letters, 2016, 7(17): 3519–3533
https://doi.org/10.1021/acs.jpclett.6b01198
33 Z Luo, Y Lu, L A Somers, A T C Johnson. High yield preparation of macroscopic graphene oxide membranes. Journal of the American Chemical Society, 2009, 131(3): 898–899
https://doi.org/10.1021/ja807934n
34 M J Frisch, G W Trucks, H B Schlegel, G E Scuseria, M A Robb, J R Cheeseman, G Scalmani, V Barone, B Mennucci, G A Petersson, H Nakatsuji, M Caricato, X Li, H P Hratchian, A F Izmaylov, J Bloino, G Zheng, J L Sonnenberg, M Hada, M Ehara, K Toyota, R Fukuda, J Hasegawa, M Ishida, T Nakajima, Y Honda, O Kitao, H Nakai, T Vreven, J A Montgomery Jr, J E Peralta, F Ogliaro, M Bearpark, J J Heyd, E Brothers, K N Kudin, V N Staroverov, R Kobayashi, J Normand, K Raghavachary, A Rendell, J C Burant, S S Iyengar, J Tomasi, M Cossi, N Rega, N J Millam, M Klene, J E Knox, J B Cross, V Bakken, C Amado, J Jaramillo, R Gomperts, R E Stratmann, O Yazyev, A J Austin, R Cammi, C Pomelli, J W Ochterski, R L Martin, K Morokuma, V G Zakrzewski, G A Voth, P Salvador, J J Dannenberg, S Dapprich, A D Daniels, Ö Farkas, J B Foresman, J V Ortiz, J Cioslowski, D J. Fox Gaussian 09W Revision D.01. Wallingford, CT: Gaussian, Inc., 2013
35 K van Alem, E J R Sudhölter, H Zuilhof. Quantum chemical calculations on α-substituted ethyl cations: a comparison between B3LYP and Post-HT method. The Journal of Physical Chemistry A, 1998, 102(52): 10860–10868
https://doi.org/10.1021/jp983114u
36 Z P Zhao, M S Li, J Y Zhang, H N Li, P P Zhu, W F Liu. New chiral catalytic membranes created by coupling UV-photografting with covalent immobilization of salen-Co(III) for hydrolytic kinetic resolution of racemic epichlorohydrin. Industrial & Engineering Chemistry Research, 2012, 51(28): 9531–9539
https://doi.org/10.1021/ie3011935
37 H R Chen, J L Shi, W H Zhang, M L Ruan, D S Yan. Incorporation of titanium into the inorganic wall of ordered porous zirconium oxide via direct synthesis. Chemistry of Materials, 2001, 13(3): 1035–1040
https://doi.org/10.1021/cm000798l
38 T Ebina, T Iwasaki, A Chatterjee, M Katagiri, G D Stucky. Comparative study of XPS and DFT with reference to the distributions of Al in tetrahedral octahedral sheets of phyllosilicates. The Journal of Physical Chemistry B, 1997, 101(7): 1125–1129
https://doi.org/10.1021/jp9622647
39 I Jirka. Initial and final state effects in the photoelectron and auger spectra of Si and Al bonded in zeolites. The Journal of Physical Chemistry B, 1997, 101(41): 8133–8140
https://doi.org/10.1021/jp9713672
40 I R Galindo, T Viveros, D Chadwick. Synthesis and characterization of titania-based ternary and binary mixed oxides prepared by the sol-gel method and their activity in 2-propanol dehydration. Industrial & Engineering Chemistry Research, 2007, 46(4): 1138–1147
https://doi.org/10.1021/ie060539r
41 N Hiyoshi. Nanocrystalline sodalite: preparation and application to epoxidation of 2-cyclohexen-1-one with hydrogen peroxide. Applied Catalysis A: General, 2012, 419–420: 164–169
https://doi.org/10.1016/j.apcata.2012.01.026
42 H Zhan, X Yang, C Wang, J Chen, Y Wen, C Liang, H F Greer, M Wu, W Zhou. Multiple nucleation and crystal growth of barium titanate. Crystal Growth & Design, 2012, 12(3): 1247–1253
https://doi.org/10.1021/cg201259u
43 K S W Sing, D H Everett, R A W Haul, L Moscou, R A Pierotti, J Rouquérol, T Siemieniewska. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57(4): 603–619
https://doi.org/10.1351/pac198557040603
44 H Zhang, Y M Wang, L Zhang, G Gerritsen, H C L Abbenhuis, R A van Santen, C Li. Enantioselective epoxidation of β-methylstyrene catalyzed by immobilized Mn(salen) catalysts in different mesoporous silica supports. Journal of Catalysis, 2008, 256(2): 226–236
https://doi.org/10.1016/j.jcat.2008.03.013
45 K H Lee, K W Kim, A Pesapane, H Y Kim, J F Rabolt. Polarized FT-IR study of macroscopically oriented electrospun Nylon-6 nanofibers. Macromolecules, 2008, 41(4): 1494–1498
https://doi.org/10.1021/ma701927w
46 C Pan, B Huang, X Li, H Zhu, D Zhang, A Zheng, Y Li, Y Sun. Synthesis and catalytic property of fibrous titanium-containing graphite oxide. Catalysis Surveys from Asia, 2017, 21(4): 160–174
https://doi.org/10.1007/s10563-017-9233-2
47 A Barroso-Bogeat, M Alexandre-Franco, C Fernández-González, A Macías-García, V Gómez-Serrano. Preparation of activated carbon-SnO2, TiO2, and WO3 catalysts. Study by FT-IR spectroscopy. Industrial & Engineering Chemistry Research, 2016, 55(18): 5200–5206
https://doi.org/10.1021/acs.iecr.5b04563
48 M Eryürek, S Haman Bayarı, D Yüksel, M E Hanhan. Density functional investigation of the molecular structures, vibrational spectra and molecular properties of sulfonated pyridyl imine ligands and their palladium complexes. Computational and Theoretical Chemistry, 2013, 1013: 109–115
https://doi.org/10.1016/j.comptc.2013.03.011
[1] FEP-20023-OF-PC_suppl_1 Download
[1] Omeralfaroug KHALIFA, Mingxin XU, Rongjun ZHANG, Tahir IQBAL, Mingfeng LI, Qiang LU. Steam reforming of toluene as a tar model compound with modified nickel-based catalyst[J]. Front. Energy, 2022, 16(3): 492-501.
[2] Wenwei LEI, Norihiro SUZUKI, Chiaki TERASHIMA, Akira FUJISHIMA. Hydrogel photocatalysts for efficient energy conversion and environmental treatment[J]. Front. Energy, 2021, 15(3): 577-595.
[3] Haoxuan MA, Chunli LIU. A mini-review of ferrites-based photocatalyst on application of hydrogen production[J]. Front. Energy, 2021, 15(3): 621-630.
[4] Jiali DONG, Xuqiang ZHANG, Gongxuan LU, Chengwei WANG. Generation of enhanced stability of SnO/In(OH)3/InP for photocatalytic water splitting by SnO protection layer1[J]. Front. Energy, 2021, 15(3): 710-720.
[5] Yuichi YAMAGUCHI, Akihiko KUDO. Visible light responsive photocatalysts developed by substitution with metal cations aiming at artificial photosynthesis[J]. Front. Energy, 2021, 15(3): 568-576.
[6] Wei CHEN, Xiang LIU, Shaojie WEI, Qianqian HENG, Binfen WANG, Shilong LIU, Li GAO, Liqun MAO. In situ growth of a-few-layered MoS2 on CdS nanorod for high efficient photocatalytic H2 production[J]. Front. Energy, 2021, 15(3): 752-759.
[7] Yanyan GAO, Ming HOU, Manman QI, Liang HE, Haiping CHEN, Wenzhe LUO, Zhigang SHAO. New insight into effect of potential on degradation of Fe-N-C catalyst for ORR[J]. Front. Energy, 2021, 15(2): 421-430.
[8] Ahmed Mohmed DAFALLA, Fangming JIANG. Effect of catalyst layer mesoscopic pore-morphology on cold start process of PEM fuel cells[J]. Front. Energy, 2021, 15(2): 460-472.
[9] Ru Shien TAN, Tuan Amran TUAN ABDULLAH, Anwar JOHARI, Khairuddin MD ISA. Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: a review[J]. Front. Energy, 2020, 14(3): 545-569.
[10] Arunkumar JAYAKUMAR. A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack[J]. Front. Energy, 2019, 13(2): 325-338.
[11] Soheil RASHIDI, Akshay CARINGULA, Andy NGUYEN, Ijeoma OBI, Chioma OBI, Wei WEI. Recent progress in MoS2 for solar energy conversion applications[J]. Front. Energy, 2019, 13(2): 251-268.
[12] S. Y. SHEN, Y. G. GUO, G. H. WEI, L. X. LUO, F. LI, J. L. ZHANG. A perspective on the promoting effect of Ir and Au on Pd toward the ethanol oxidation reaction in alkaline media[J]. Front. Energy, 2018, 12(4): 501-508.
[13] Alireza AHMADIAN YAZDI, Jie XU. Nitrogen-doped graphene approach to enhance the performance of a membraneless enzymatic biofuel cell[J]. Front. Energy, 2018, 12(2): 233-238.
[14] Jun HUANG, Zhe LI, Jianbo ZHANG. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer[J]. Front. Energy, 2017, 11(3): 334-364.
[15] Changlin ZHANG, Xiaochen SHEN, Yanbo PAN, Zhenmeng PENG. A review of Pt-based electrocatalysts for oxygen reduction reaction[J]. Front. Energy, 2017, 11(3): 268-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed