Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2021, Vol. 15 Issue (3) : 621-630    https://doi.org/10.1007/s11708-021-0761-0
MINI REVIEW
A mini-review of ferrites-based photocatalyst on application of hydrogen production
Haoxuan MA, Chunli LIU()
Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
 Download: PDF(1919 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Photocatalytic water splitting for hydrogen production is a promising strategy to produce renewable energy and decrease production cost. Spinel-ferrites are potential photocatalysts in photocatalytic reaction system due to their room temperature magnetization, the high thermal and chemical stability, narrow bandgap with broader visible light absorption, and proper conduction band energy level with strong oxidation activity for water or organic compounds. However, the fast recombination of the photoexcited electrons and holes is a critical drawback of ferrites. Therefore, the features of crystallinity, particle size, specific surface area, morphology, and band energy structure have been summarized and investigated to solve this issue. Moreover, composites construction with ferrites and the popular support of TiO2 or g-C3N4 are also summarized to illustrate the advanced improvement in photocatalytic hydrogen production. It has been shown that ferrites could induce the formation of metal ions impurity energy levels in TiO2, and the strong oxidation activity of ferrites could accelerate the oxidation reaction kinetics in both TiO2/ferrites and g-C3N4/ferrites systems. Furthermore, two representative reports of CaFe2O4/MgFe2O4 composite and ZnFe2O4/CdS composite are used to show the efficient heterojunction in a ferrite/ferrite composite and the ability of resistance to photo-corrosion, respectively.

Keywords photocatalyst      spinel-ferrite      composite      photocatalytic hydrogen production     
Corresponding Author(s): Chunli LIU   
Online First Date: 26 July 2021    Issue Date: 09 October 2021
 Cite this article:   
Haoxuan MA,Chunli LIU. A mini-review of ferrites-based photocatalyst on application of hydrogen production[J]. Front. Energy, 2021, 15(3): 621-630.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-021-0761-0
https://academic.hep.com.cn/fie/EN/Y2021/V15/I3/621
Fig.1  Schematic of photocatalytic production of hydrogen.
Fig.2  Partial unit cell of spinel ferrite AB2O4.
Fig.3  Spinel ferrites easily collected by a magnet.
Materials/keywords Method Morphology Particle size (crystalline size) Surface area/(m2·g–1) HER/(mol·g–1·h–1)
CoFe2O4 [22]/oxygen defects Coprecipitation Nanoparticles 25(20); 20.0 310.0
Mechanical ball milling Agglomerates 100–500(5) 4.0 490.0
NiFe2O4 [32]/surface area and size Hydrothermal and calcination (CTAB) Nanoparticles (18.1) 76.0 154.5
Hydrothermal and calcination Agglomerates (18.1) smaller 16.1
NiFe2O4 [33]/crystallinity ASPM Mesoporous sphere 200
High crystallinity
121.0 44.0
ASPM Mesoporous sphere 200
Low crystallinity
278.0 9.0
MgFe2O4 [23] Hydrothermal Cubic 90 53.0 81.0
CuFe2O4 [26]/size Sol-gel Nanoparticles 80 1720.0
Coprecipitation Irregular particles Irregular size 1333.0
Solid state Aggregate
badly
1000 1060.0
ZnFe2O4 [27]/morphology Hydrothermal and calcination Porous nanorod Length: 122
Diameter: 29
52.0 47.0
Hydrothermal and calcination Flaky 51.0 17.0
ZnFe2O4 [28]/size Rapid microwave solid-state Nanoparticles (35) 4.6 133.4
Solid-state Agglomerates (53) 2.2 31.7
ZnFe2O4
CoFe2O4
NiFe2O4 [29]
/band structures
Oil-in-water microemulsion reaction Nanoparticle 12–20 49 44.3
Same Nanoparticle 12–20 64 16
Same Nanoparticle 12–20 65 16.1
Tab.1  Summary of morphology, particle or crystalline size, crystallinity, and specific surface areas with corresponding HER properties
Fig.4  Normal types (I and II) of junction between two semi-conductors (SC).
Fig.5  Plausible mechanism of photocatalytic activity under UV-visible light (UV-Vis) irradiation of CoFe2O4--TiO2/rGO photocatalyst.
Materials Synthesis methods Morphology HER/(mol·g–1·h–1) Lamp Ref.
TiO2
TiO2/rGO
TiO2/CoFe2O4
TiO2/CoFe2O4/rGO
Ultrasound-assisted wet
impregnation method (composite)
Non-special 5336
9421
16673
76559
UV-Vis [43]
TiO2
TiO2/rGO
TiO2/CuFe2O4
TiO2/CuFeO4/rGO
Ultrasound-assisted wet
impregnation method (composite)
Non-special 4640
9397
14719
35981
UV-Vis [44]
TiO2
TiO2/NiFe2O4
Sol-gel/precipitation Core/shell 0 mL
18.5 mL
UV [44]
Tab.2  Summary of performances in composites of TiO2/ferrites and CN/ferrites
Materials Synthesis methods Morphology HER/(mol·g–1·h–1) Lamp Ref.
g-C3N4 (CN)
CN/Pt
CN/MgFe2O4
CN/MgFe2O4/Pt
Sol-gel
/calcination
Non-special 12.5
100.0
3.0
300.9
Vis >420 nm [52]
CN/Pt
CN/NiFe2O4/Pt
CN/CoFe2O4/Pt
Sol-gel
/calcination
Non-special 53.7
161.1
187.9
Vis >420 nm [53]
CN
CN/MnFe2O4
CN/CoFe2O4
CN/NiFe2O4
Liquid self-assembly Uniformly nano-ferrites 0.27
1.07
1.51
1.82
Vis >420 nm [54]
  
1 I Dincer, C Acar. Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 2015, 40(34): 11094–11111
https://doi.org/10.1016/j.ijhydene.2014.12.035
2 C M Kalamaras, A M Efstathiou. Hydrogen production technologies: current state and future developments. Conference Papers in Science. Hindawi, 2013, available at the website of hindawi.com
3 K Maeda, K Domen. Photocatalytic water splitting: recent progress and future challenges. Journal of Physical Chemistry Letters, 2010, 1(18): 2655–2661
https://doi.org/10.1021/jz1007966
4 A Fujishima, K Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
https://doi.org/10.1038/238037a0
5 M Navlani-García, K Mori, Y Kuwahara, et al.. Recent strategies targeting efficient hydrogen production from chemical hydrogen storage materials over carbon-supported catalysts. NPG Asia Materials, 2018, 10(4): 277–292
https://doi.org/10.1038/s41427-018-0025-6
6 N Fajrina, M Tahir. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. International Journal of Hydrogen Energy, 2019, 44(2): 540–577
https://doi.org/10.1016/j.ijhydene.2018.10.200
7 Y Bessekhouad, M Trari. Photocatalytic hydrogen production from suspension of spinel powders AMn2O4 (A= Cu and Zn). International Journal of Hydrogen Energy, 2002, 27(4): 357–362
https://doi.org/10.1016/S0360-3199(01)00159-8
8 I P Muthuselvam, R N Bhowmik. Structural phase stability and magnetism in Co2FeO4 spinel oxide. Solid State Sciences, 2009, 11(3): 719–725
https://doi.org/10.1016/j.solidstatesciences.2008.10.012
9 V A M Brabers. Progress in spinel ferrite research. In: Brück E, ed. Handbook of Magnetic Materials. Elsevier, 1995
10 Y Jia, H Ma, W Zhang, et al.. Z-scheme SnFe2O4-graphitic carbon nitride: reusable, magnetic catalysts for enhanced photocatalytic CO2 reduction. Chemical Engineering Journal, 2020, 383: 123172
https://doi.org/10.1016/j.cej.2019.123172
11 D Guo, H Kang, P Wei, et al.. A high-performance bimetallic cobalt iron oxide catalyst for the oxygen evolution reaction. CrystEngComm, 2020, 22(25): 4317–4323
https://doi.org/10.1039/D0CE00401D
12 D Hong, Y Yamada, T Nagatomi, et al.. Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O82–. Journal of the American Chemical Society, 2012, 134(48): 19572–19575
https://doi.org/10.1021/ja309771h
13 Y Xiong, Y Yang, X Feng, et al.. A strategy for increasing the efficiency of the oxygen reduction reaction in Mn-doped cobalt ferrites. Journal of the American Chemical Society, 2019, 141(10): 4412–4421
https://doi.org/10.1021/jacs.8b13296
14 V Preethi, S Kanmani. Photocatalytic hydrogen production. Materials Science in Semiconductor Processing, 2013, 16(3): 561–575
https://doi.org/10.1016/j.mssp.2013.02.001
15 M D Bhatt, J S Lee. Nanomaterials for photocatalytic hydrogen production: from theoretical perspectives. RSC Advances, 2017, 7(55): 34875–34885
https://doi.org/10.1039/C7RA03435K
16 X Yang, D Wang. Photocatalysis: from fundamental principles to materials and applications. ACS Applied Energy Materials, 2018, 1(12): 6657–6693
https://doi.org/10.1021/acsaem.8b01345
17 D H Taffa, R Dillert, A C Ulpe, et al.. Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3−xO4) for water splitting: a mini-review. Journal of Photonics for Energy, 2016, 7(1): 012009
https://doi.org/10.1117/1.JPE.7.012009
18 Z Szotek, W M Temmerman, D Ködderitzsch, et al.. Electronic structures of normal and inverse spinel ferrites from first principles. Physical Review. B, 2006, 74(17): 174431
https://doi.org/10.1103/PhysRevB.74.174431
19 D S Mathew, R S Juang. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical Engineering Journal, 2007, 129(1–3): 51–65
https://doi.org/10.1016/j.cej.2006.11.001
20 B S Holinsworth, D Mazumdar, H Sims, et al.. Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs NiFe2O4. Applied Physics Letters, 2013, 103(8): 082406
https://doi.org/10.1063/1.4818315
21 G Rekhila, Y Bessekhouad, M Trari. Visible light hydrogen production on the novel ferrite NiFe2O4. International Journal of Hydrogen Energy, 2013, 38(15): 6335–6343
https://doi.org/10.1016/j.ijhydene.2013.03.087
22 Y Ortega López, H Medina Vázquez, J Salinas Gutiérrez, et al.. Synthesis method effect of CoFe2O4 on its photocatalytic properties for H2 production from water and visible light. Journal of Nanomaterials, 2015, 2015: 1–9
https://doi.org/10.1155/2015/985872
23 T Peng, X Zhang, H Lv, et al.. Preparation of NiFe2O4 nanoparticles and its visible-light-driven photoactivity for hydrogen production. Catalysis Communications, 2012, 28: 116–119
https://doi.org/10.1016/j.catcom.2012.08.031
24 D Hong, Y Yamada, M Sheehan, et al.. Mesoporous nickel ferrites with spinel structure prepared by an aerosol spray pyrolysis method for photocatalytic hydrogen evolution. ACS Sustainable Chemistry & Engineering, 2014, 2(11): 2588–2594
https://doi.org/10.1021/sc500484b
25 V Guzmán-Velderrain, M Meléndez Zaragoza, et al.. Photocatalytic hydrogen production under visible light over magnesium ferrite. In: XIV International Congress of the Mexican Hydrogen Society Cancun, Mexico, 2014
26 H Zazoua, A Boudjemaa, R Chebout, et al.. Enhanced photocatalytic hydrogen production under visible light over a material based on magnesium ferrite derived from layered double hydroxides (LDHs). International Journal of Energy Research, 2014, 38(15): 2010–2018
https://doi.org/10.1002/er.3215
27 S Saadi, A Bouguelia, M Trari. Photoassisted hydrogen evolution over spinel CuM2O4 (M= Al, Cr, Mn, Fe and Co). Renewable Energy, 2006, 31(14): 2245–2256
https://doi.org/10.1016/j.renene.2005.10.014
28 H Yang, J Yan, Z Lu, et al.. Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation. Journal of Alloys and Compounds, 2009, 476(1–2): 715–719
https://doi.org/10.1016/j.jallcom.2008.09.104
29 H Lv, L Ma, P Zeng, et al.. Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light. Journal of Materials Chemistry, 2010, 20(18): 3665–3672
https://doi.org/10.1039/b919897k
30 R Dom, R Subasri, N Y Hebalkar, et al.. Synthesis of a hydrogen producing nanocrystalline ZnFe2O4 visible light photocatalyst using a rapid microwave irradiation method. RSC Advances, 2012, 2(33): 12782–12791
https://doi.org/10.1039/c2ra21910g
31 A A Rodríguez-Rodríguez, M B Moreno-Trejo, M J Meléndez-Zaragoza, et al.. Spinel-type ferrite nanoparticles: synthesis by the oil-in-water microemulsion reaction method and photocatalytic water-splitting evaluation. International Journal of Hydrogen Energy, 2019, 44(24): 12421–12429
https://doi.org/10.1016/j.ijhydene.2018.09.183
32 B Q Zhang, L Lu, M O Lai. Evolution of vacancy densities in powder particles during mechanical milling. Physica B, Condensed Matter, 2003, 325: 120–129
https://doi.org/10.1016/S0921-4526(02)01459-X
33 Y Geng, T Ablekim, P Mukherjee, et al.. High-energy mechanical milling-induced crystallization in Fe32Ni52Zr3B13. Journal of Non-Crystalline Solids, 2014, 404: 140–144
https://doi.org/10.1016/j.jnoncrysol.2014.08.015
34 Y Jia, H Ma, C Liu. Au nanoparticles enhanced Z-scheme Au-CoFe2O4/MoS2 visible light photocatalyst with magnetic retrievability. Applied Surface Science, 2019, 463: 854–862
https://doi.org/10.1016/j.apsusc.2018.09.008
35 R Singh, S Dutta. A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts. Fuel, 2018, 220: 607–620
https://doi.org/10.1016/j.fuel.2018.02.068
36 C Haw, W Chiu, S Abdul Rahman, et al.. The design of new magnetic-photocatalyst nanocomposites (CoFe2O4–TiO2) as smart nanomaterials for recyclable-photocatalysis applications. New Journal of Chemistry, 2016, 40(2): 1124–1136
https://doi.org/10.1039/C5NJ02496J
37 V K Gupta, T Eren, N Atar, et al.. CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. Journal of Molecular Liquids, 2015, 208: 122–129
https://doi.org/10.1016/j.molliq.2015.04.032
38 B K Ghosh, D Moitra, M Chandel, et al.. Preparation of TiO2/cobalt ferrite/reduced graphene oxide nanocomposite based magnetically separable catalyst with improved photocatalytic activity. Journal of Nanoscience and Nanotechnology, 2017, 17(7): 4694–4703
https://doi.org/10.1166/jnn.2017.13740
39 F Wei, H Wang, W Ran, et al.. Preparation of S–N co-doped CoFe2O4@rGO@TiO2 nanoparticles and their superior UV-Vis light photocatalytic activities. RSC Advances, 2019, 9(11): 6152–6162
https://doi.org/10.1039/C8RA10238D
40 Y Y Yu, H Q Zhang. Reduced graphene oxide coupled magnetic CuFe2O4-TiO2 nanoparticles with enhanced photocatalytic activity for methylene blue degradation. Chinese Journal of Structural Chiemistry, 2016, 35(3): 472–480
https://doi.org/10.14102/j.cnki.0254-5861.2011-1041
41 Y Jia, J Liu, S Cha, et al.. Magnetically separable Au-TiO2/nanocube ZnFe2O4 composite for chlortetracycline removal in wastewater under visible light. Journal of Industrial and Engineering Chemistry, 2017, 47: 303–314
https://doi.org/10.1016/j.jiec.2016.12.001
42 C J Li, J N Wang, B Wang, et al.. A novel magnetically separable TiO2/CoFe2O4 nanofiber with high photocatalytic activity under UV–Vis light. Materials Research Bulletin, 2012, 47(2): 333–337
https://doi.org/10.1016/j.materresbull.2011.11.012
43 H Y Hafeez, S K Lakhera, N Narayanan, et al.. Environmentally sustainable synthesis of a CoFe2O4–TiO2/rGO ternary photocatalyst: a highly efficient and stable photocatalyst for high production of hydrogen (solar fuel). ACS Omega, 2019, 4(1): 880–891
https://doi.org/10.1021/acsomega.8b03221
44 H Y Hafeez, S K Lakhera, P Karthik, et al.. Facile construction of ternary CuFe2O4-TiO2 nanocomposite supported reduced graphene oxide (rGO) photocatalysts for the efficient hydrogen production. Applied Surface Science, 2018, 449: 772–779
https://doi.org/10.1016/j.apsusc.2018.01.282
45 H S Kim, D Kim, B S Kwak, et al.. Synthesis of magnetically separable core@shell structured NiFe2O4@TiO2 nanomaterial and its use for photocatalytic hydrogen production by methanol/water splitting. Chemical Engineering Journal, 2014, 243: 272–279
https://doi.org/10.1016/j.cej.2013.12.046
46 J Wen, J Xie, X Chen, et al.. A review on g-C3N4-based photocatalysts. Applied Surface Science, 2017, 391: 72–123
https://doi.org/10.1016/j.apsusc.2016.07.030
47 X Wang, K Maeda, A Thomas, et al.. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 2009, 8(1): 76–80
https://doi.org/10.1038/nmat2317
48 B Babu, R Koutavarapu, J Shim, et al.. Enhanced visible-light-driven photoelectrochemical and photocatalytic performance of Au-SnO2 quantum dot-anchored g-C3N4 nanosheets. Separation and Purification Technology, 2020, 240: 116652
https://doi.org/10.1016/j.seppur.2020.116652
49 S Wang, P He, L Jia, et al.. Nanocoral-like composite of nickel selenide nanoparticles anchored on two-dimensional multi-layered graphitic carbon nitride: a highly efficient electrocatalyst for oxygen evolution reaction. Applied Catalysis B: Environmental, 2019, 243: 463–469
https://doi.org/10.1016/j.apcatb.2018.10.071
50 M U Yousaf, E Pervaiz, S Minallah, et al.. Tin oxide quantum dots decorated graphitic carbon nitride for enhanced removal of organic components from water: green process. Results in Physics, 2019, 14: 102455
https://doi.org/10.1016/j.rinp.2019.102455
51 L Wang, W Si, Y Tong, et al.. Graphitic carbon nitride (g-C3N4)-based nanosized heteroarrays: promising materials for photoelectrochemical water splitting. Carbon Energy, 2020, 2(2): 223–250
https://doi.org/10.1002/cey2.48
52 J Chen, D Zhao, Z Diao, et al.. Bifunctional modification of graphitic carbon nitride with MgFe2O4 for enhanced photocatalytic hydrogen generation. ACS Applied Materials & Interfaces, 2015, 7(33): 18843–18848
https://doi.org/10.1021/acsami.5b05714
53 J Chen, D Zhao, Z Diao, et al.. Ferrites boosting photocatalytic hydrogen evolution over graphitic carbon nitride: a case study of (Co, Ni) Fe2O4 modification. Science Bulletin, 2016, 61(4): 292–301
https://doi.org/10.1007/s11434-016-0995-0
54 M Aksoy, G Yanalak, E Aslan, et al.. Visible light-driven hydrogen evolution by using mesoporous carbon nitride-metal ferrite (MFe2O4/mpg-CN; M: Mn, Fe, Co and Ni) nanocomposites as catalysts. International Journal of Hydrogen Energy, 2020, 45(33): 16509–16518
https://doi.org/10.1016/j.ijhydene.2020.04.111
55 H G Kim, P H Borse, J S Jang, et al.. Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. Chemical Communications, 2009, (39): 5889–5891
https://doi.org/10.1039/b911805e
56 T H Yu, W Y Cheng, K J Chao, et al.. ZnFe2O4 decorated CdS nanorods as a highly efficient, visible light responsive, photochemically stable, magnetically recyclable photocatalyst for hydrogen generation. Nanoscale, 2013, 5(16): 7356–7360
https://doi.org/10.1039/c3nr02658b
[1] Haoxuan MA, Yuefa JIA, Jongseong BAE, Chunli LIU. Factors affecting photocatalytic performance through the evolution of the properties due to the phase transition from NaBiO3·2H2O to BiO2–x[J]. Front. Energy, 2022, 16(3): 471-482.
[2] Dong LIU, Zhuqing YAN, Peng ZENG, Haoran LIU, Tianyou PENG, Renjie LI. In situ grown TiN/N-TiO2 composite for enhanced photocatalytic H2 evolution activity[J]. Front. Energy, 2021, 15(3): 721-731.
[3] Jiali DONG, Xuqiang ZHANG, Gongxuan LU, Chengwei WANG. Generation of enhanced stability of SnO/In(OH)3/InP for photocatalytic water splitting by SnO protection layer1[J]. Front. Energy, 2021, 15(3): 710-720.
[4] Wenwei LEI, Norihiro SUZUKI, Chiaki TERASHIMA, Akira FUJISHIMA. Hydrogel photocatalysts for efficient energy conversion and environmental treatment[J]. Front. Energy, 2021, 15(3): 577-595.
[5] Yuichi YAMAGUCHI, Akihiko KUDO. Visible light responsive photocatalysts developed by substitution with metal cations aiming at artificial photosynthesis[J]. Front. Energy, 2021, 15(3): 568-576.
[6] Ruixiang WANG, Yihao ZHANG, Haizhou WU. Tribological properties of onion like fullerenes and NiFe2O4 nanocomposites in reciprocating motion[J]. Front. Energy, 2021, 15(1): 208-212.
[7] Zhengxu BIAN, Zehua TANG, Jinfeng XIE, Junhao ZHANG, Xingmei GUO, Yuanjun LIU, Aihua YUAN, Feng ZHANG, Qinghong KONG. Preparation and lithium storage performances of g-C3N4/Si nanocomposites as anode materials for lithium-ion battery[J]. Front. Energy, 2020, 14(4): 759-766.
[8] Ruixiang WANG, Yihao ZHANG, Yi LIAO. Performance of rolling piston type rotary compressor using fullerenes (C70) and NiFe2O4 nanocomposites as lubricants additives[J]. Front. Energy, 2020, 14(3): 644-648.
[9] Jingning SHAN, Xiaofang YANG, Chao YAN, Lin CHEN, Fang ZHAO, Yiguang JU. Promoting Si-graphite composite anodes with SWCNT additives for half and NCM811 full lithium ion batteries and assessment criteria from an industrial perspective[J]. Front. Energy, 2019, 13(4): 626-635.
[10] Lei ZHANG, Junqing ZHANG. Metal-organic frameworks for CO2 photoreduction[J]. Front. Energy, 2019, 13(2): 221-250.
[11] Bin LIU, Lan DONG, Qing XI, Xiangfan XU, Jun ZHOU, Baowen LI. Thermal transport in organic/inorganic composites[J]. Front. Energy, 2018, 12(1): 72-86.
[12] Gang WU. Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells[J]. Front. Energy, 2017, 11(3): 286-298.
[13] Reza B. MOGHADDAM, Samaneh SHAHGALDI, Xianguo LI. A facile synthesis of high activity cube-like Pt/carbon composites for fuel cell application[J]. Front. Energy, 2017, 11(3): 245-253.
[14] Seyed Mohsen MIRYOUSEFI AVAL,Amir AHADI,Hosein HAYATI. A novel method for reliability and risk evaluation of wind energy conversion systems considering wind speed correlation[J]. Front. Energy, 2016, 10(1): 46-56.
[15] Yujie DING,Jing LIU. Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon[J]. Front. Energy, 2016, 10(1): 29-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed