Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2009, Vol. 4 Issue (2) : 297-310    https://doi.org/10.1007/s11464-009-0019-3
RESEARCH ARTICLE
Generalized Heisenberg-Virasoro algebras
Dong LIU1(), Linsheng ZHU2
1. Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China; 2. Department of Mathematics, Changshu Institute of Technology, Changshu 215500, China
 Download: PDF(179 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we mainly study the generalized Heisenberg-Virasoro algebra. Some structural properties of the Lie algebra are obtained.

Keywords Generalized Heisenberg-Virasoro algebra      central extension      automorphism     
Corresponding Author(s): LIU Dong,Email:liudong@hutc.zj.cn   
Issue Date: 05 June 2009
 Cite this article:   
Dong LIU,Linsheng ZHU. Generalized Heisenberg-Virasoro algebras[J]. Front Math Chin, 2009, 4(2): 297-310.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0019-3
https://academic.hep.com.cn/fmc/EN/Y2009/V4/I2/297
1 Arbarello E, DeConcini C, Kac V G, Procesi C. Moduli spaces of curves and representation theory. Comm Math Phys , 1988, 117: 1-36
doi: 10.1007/BF01228409
2 Benkart G M, Moody R V. Derivations, central extensions and affine Lie algebras. Algebras Groups Geom , 1986, 3(4): 456-492
3 Billig Y. Representations of the twisted Heisenberg-Virasoro algebra at level zero. Canad Math Bull , 2003, 46(4): 529-537
4 Dokovi? D ?, Zhao Kaiming. Generalized Cartan type W Lie algebras in characteristic zero. J Algebra , 1997, 195: 170-210
doi: 10.1006/jabr.1997.7067
5 Dokovi? D ?, Zhao Kaiming. Derivations, isomorphisms, and second cohomology of generalized Witt algebras. Trans Amer Math Soc , 1998, 350(2): 643-664
doi: 10.1090/S0002-9947-98-01786-3
6 Fabbri M A, Moody R V. Irreducible representations of Virasoro-toroidal Lie algebras. Comm Math Phys , 1994, 159(1): 1-13
doi: 10.1007/BF02100482
7 Fabbri M A, Okoh F. Representations of Virasoro-Heisenberg algebras and Virasorotoroidal algebras. Canad J Math , 1999, 51(3): 523-545
8 Farnsteiner R. Derivations and extensions of ?nitely generated graded Lie algebras. J Algebra , 1988, 118(1): 34-45
doi: 10.1016/0021-8693(88)90046-4
9 Jiang Qifen, Jiang Cuipo. Representations of the twisted Heisenberg-Virasoro algebra and the full Toroidal Lie Algebras. Algebra Colloquium , 2007, 14(1): 117-134
10 Kawamoto N. Generalizations of Witt algebras over a ?eld of characteristic zero. Hiroshinma Math J , 1986, 16: 417-426
11 Liu Dong, Jiang Cuipo. Harish-Chandra modules over the twisted Heisenberg- Virasoro algebra. J Math Phys , 2008, 49(1): 1-13
12 Lu Rencai, Zhao Kaiming. Classi?cation of irreducible weight modules over the twisted Heisenberg-Virasoro algebra. arXiv:math/0510194v1
13 Pianzola A. Automorphisms of toroidal Lie algebras and their central quotients. J Algebra Appl , 2002, 1(1): 113-121
doi: 10.1142/S0219498802000082
14 Shen Ran, Jiang Qifen, Su Yucai. Verma modules over the generalized Heisenberg- Virasoro algebra. Comm Alg , 2008, 38(4): 1464-1473
15 Su Yucai, Zhao Kaiming. Simple algebras of Weyl type. Science in China, Ser A , 2001, 44: 419-426
doi: 10.1007/BF02881878
16 Su Yucai, Zhao Kaiming. Generalized Virasoro and super-Virasoro algebras and modules of the intermediate series. J Alg , 2002, 252: 1-19
doi: 10.1016/S0021-8693(02)00021-2
17 Su Yucai, Zhao Kaiming. Structure of Lie algebras of Weyl type. Comm Alg , 2004, 32: 1052-1059
18 Xue Min, Lin Weiqiang, Tan Shaobin. Central extension, derivations and automorphism group for Lie algebras arising from the 2-dimensional torus. Journal of Lie Theory , 2005, 16: 139-153
[1] Tao XU, Heguo LIU. Regular automorphisms of order p2[J]. Front. Math. China, 2019, 14(6): 1367-1373.
[2] Wei JIN. Pentavalent vertex-transitive diameter two graphs[J]. Front. Math. China, 2017, 12(2): 377-388.
[3] Tingting JIA,Ruju ZHAO,Libin LI. Automorphism group of Green ring of Sweedler Hopf algebra[J]. Front. Math. China, 2016, 11(4): 921-932.
[4] Yan ZHU,Haiyan GUAN,Shenglin ZHOU. Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle[J]. Front. Math. China, 2015, 10(6): 1483-1496.
[5] Yongjie WANG,Shikui SHANG,Yun GAO. Color cyclic homology and Steinberg Lie color algebras[J]. Front. Math. China, 2015, 10(5): 1179-1202.
[6] Qinhai ZHANG,Xiaoxiao LI,Meijuan SU. Finite p-groups whose nonnormal subgroups have orders at most p3[J]. Front. Math. China, 2014, 9(5): 1169-1194.
[7] Jizhu NAN,Chunyue WANG,Qingcheng ZHANG. Hom-Malcev superalgebras[J]. Front. Math. China, 2014, 9(3): 567-584.
[8] Lijun HUO,Wenbin GUO,Gengsheng ZHANG. Automorphisms of generalized orthogonal graphs of characteristic 2[J]. Front. Math. China, 2014, 9(2): 303-319.
[9] Hengyun YANG, Yafeng YU, Tingfu YAO. Derivation algebra and automorphism group of generalized topological N = 2 superconformal algebra[J]. Front Math Chin, 2013, 8(4): 973-986.
[10] Jixia YUAN, Wende LIU. Filtration, automorphisms, and classification of infinite-dimensional odd contact superalgebras[J]. Front Math Chin, 2013, 8(1): 203-216.
[11] Liming TANG, Wende LIU. Automorphism groups of finite-dimensional special odd Hamiltonian superalgebras in prime characteristic[J]. Front Math Chin, 2012, 7(5): 907-918.
[12] Qinhai ZHANG, Meijuan SU. Finite 2-groups whose nonnormal subgroups have orders at most 23[J]. Front Math Chin, 2012, 7(5): 971-1003.
[13] Jialei CHEN, Shilin YANG. Quantum superalgebras uq(sl(m|n)) at roots of unity[J]. Front Math Chin, 2012, 7(4): 607-628.
[14] Hong SHEN, Hongping CAO, Guiyun CHEN. Characterization of automorphism groups of sporadic simple groups[J]. Front Math Chin, 2012, 7(3): 513-519.
[15] Pengfei GUO, Xiuyun GUO. On minimal non-MSN-groups[J]. Front Math Chin, 2011, 6(5): 847-854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed