|
|
|
Rapid fluctuation for topological dynamical systems |
Yu HUANG1( ), Yi ZHOU2 |
| 1. Department of Mathematics, Zhongshan (Sun Yat-sen) University, Guangzhou 510275, China; 2. Department of Biomedical Engineering, Zhongshan School of Medicine, Zhongshan (Sun Yat-sen) University, Guangzhou 510080, China |
|
|
|
|
Abstract In this paper, we introduce a new notion called rapid ?uctuation to characterize the complexity of a general topological dynamical system. As a continuation of the former work [Huang, Chen, Ma, J. Math. Anal. Appl., 2006, 323: 228-252], here we prove that a Lipschitz dynamical system de?ned on a compact metric space has a rapid ?uctuation if it has either a quasi shift invariant set or a topological horseshoe. As an application, the rapid ?uctuation of a discrete predator-prey model is considered.
|
| Keywords
Rapid ?uctuation
quasi-shift invariant set
topological horseshoe
Hausdorff dimension
|
|
Corresponding Author(s):
HUANG Yu,Email:stshyu@mail.sysu.edu.cn
|
|
Issue Date: 05 September 2009
|
|
| 1 |
Block L. Homoclinic points of mappings of the interval. Proc Amer Math Soc , 1978, 72: 576-580 doi: 10.2307/2042475
|
| 2 |
Chen G, Hsu S B, Huang T. Analyzing displacement term’s memory effect in a van der Pol type boundary condition to prove chaotic vibration of the wave equation. Int J Bifur & Chaos , 2002, 12: 965-981 doi: 10.1142/S0218127402004838
|
| 3 |
Chen G, Huang T, Huang Y. Chaotic behavior of interval maps and total variations of iterates. Int J Bifur & Chaos , 2004, 14: 2161-2186 doi: 10.1142/S0218127404010540
|
| 4 |
Chen G, Huang T, Juang J, Ma D. Unbounded growth of total variations of snapshots of the 1D linear wave equation due to the chaotic behavior of iterates of composite nonlinear boundary re?ection relations. In: Chen G, Lasiecka I, Zhou J, eds. Control of Nonlinear Distributed Parameter Systems. Lectures Notes on Pure & Appl Math . New York: Marcel Dekker, 2001, 15-43
|
| 5 |
Falconer K. Fractal Geometry. New York: John Wiley and Sons, 1990
|
| 6 |
Huang Y. Growth rates of total variations of snapshots of the 1D linear wave equation with composite nonlinear boundary re?ection. Int J Bifur & Chaos , 2003, 13: 1183-1195 doi: 10.1142/S0218127403007138
|
| 7 |
Huang Y. A new characterization of nonisotropic chaotic vibrations of the onedimensional linear wave equation with a Van der Pol boundary condition. J Math Anal Appl , 2003, 288(1): 78-96 doi: 10.1016/S0022-247X(03)00562-6
|
| 8 |
Huang Y. Boundary feedback anticontrol of spatiotemporal chaos for 1D hyperbolic dynamical systems. Int J Bifur & Chaos , 2004, 14: 1705-1723 doi: 10.1142/S021812740401031X
|
| 9 |
Huang Y, Chen G, Ma D W. Rapid ?uctuations of chaotic maps on ?N, J Math Anal Appl , 2006, 323: 228-252 doi: 10.1016/j.jmaa.2005.10.019
|
| 10 |
Huang Y, Feng Z. In?nite-dimensional dynamical systems induced by interval maps. Dyn Contin Discrete Impuls Syst, Ser A, Math Anal , 2006, 13(3-4): 509-524
|
| 11 |
Huang Y, Jiang X M, Zou X. Dynamics in numerics II: on a discrete predator-prey model. Diff Eqns Dyan Syst (in press)
|
| 12 |
Huang Y, Luo J, Zhou Z L. Rapid ?uctuations of snapshots of one-dimensional linear wave equation with a Van der Pol nonlinear boundary condition. Int J Bifur & Chaos , 2005, 15: 567-580 doi: 10.1142/S0218127405012223
|
| 13 |
Kennedy J, Yorke J A. Topological horseshoe. Trans Amer Math Soc , 2001, 353: 2513-2530 doi: 10.1090/S0002-9947-01-02586-7
|
| 14 |
Marotto F R. Snap-back repellers imply chaos in ?n. J Math Anal Appl , 1978, 63: 199-223 doi: 10.1016/0022-247X(78)90115-4
|
| 15 |
Marotto F R. On rede?ning a snap-back repeller. Chaos Solitons, and Fractals , 2005, 25: 25-28 doi: 10.1016/j.chaos.2004.10.003
|
| 16 |
Zhang Z S. Shift-invariant sets of endomorphisms. Acta Math Sinica , 1984, 27(4): 564-576 (in Chinese)
|
| 17 |
Zhou Z L. Symbolic Dynamics. Shanghai: Shanghai Scienti?c and Technological Education Publishing House, 1997 (in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|