Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2009, Vol. 4 Issue (3) : 483-494    https://doi.org/10.1007/s11464-009-0030-8
RESEARCH ARTICLE
Rapid fluctuation for topological dynamical systems
Yu HUANG1(), Yi ZHOU2
1. Department of Mathematics, Zhongshan (Sun Yat-sen) University, Guangzhou 510275, China; 2. Department of Biomedical Engineering, Zhongshan School of Medicine, Zhongshan (Sun Yat-sen) University, Guangzhou 510080, China
 Download: PDF(182 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we introduce a new notion called rapid ?uctuation to characterize the complexity of a general topological dynamical system. As a continuation of the former work [Huang, Chen, Ma, J. Math. Anal. Appl., 2006, 323: 228-252], here we prove that a Lipschitz dynamical system de?ned on a compact metric space has a rapid ?uctuation if it has either a quasi shift invariant set or a topological horseshoe. As an application, the rapid ?uctuation of a discrete predator-prey model is considered.

Keywords Rapid ?uctuation      quasi-shift invariant set      topological horseshoe      Hausdorff dimension     
Corresponding Author(s): HUANG Yu,Email:stshyu@mail.sysu.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Yu HUANG,Yi ZHOU. Rapid fluctuation for topological dynamical systems[J]. Front Math Chin, 2009, 4(3): 483-494.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0030-8
https://academic.hep.com.cn/fmc/EN/Y2009/V4/I3/483
1 Block L. Homoclinic points of mappings of the interval. Proc Amer Math Soc , 1978, 72: 576-580
doi: 10.2307/2042475
2 Chen G, Hsu S B, Huang T. Analyzing displacement term’s memory effect in a van der Pol type boundary condition to prove chaotic vibration of the wave equation. Int J Bifur & Chaos , 2002, 12: 965-981
doi: 10.1142/S0218127402004838
3 Chen G, Huang T, Huang Y. Chaotic behavior of interval maps and total variations of iterates. Int J Bifur & Chaos , 2004, 14: 2161-2186
doi: 10.1142/S0218127404010540
4 Chen G, Huang T, Juang J, Ma D. Unbounded growth of total variations of snapshots of the 1D linear wave equation due to the chaotic behavior of iterates of composite nonlinear boundary re?ection relations. In: Chen G, Lasiecka I, Zhou J, eds. Control of Nonlinear Distributed Parameter Systems. Lectures Notes on Pure & Appl Math . New York: Marcel Dekker, 2001, 15-43
5 Falconer K. Fractal Geometry. New York: John Wiley and Sons, 1990
6 Huang Y. Growth rates of total variations of snapshots of the 1D linear wave equation with composite nonlinear boundary re?ection. Int J Bifur & Chaos , 2003, 13: 1183-1195
doi: 10.1142/S0218127403007138
7 Huang Y. A new characterization of nonisotropic chaotic vibrations of the onedimensional linear wave equation with a Van der Pol boundary condition. J Math Anal Appl , 2003, 288(1): 78-96
doi: 10.1016/S0022-247X(03)00562-6
8 Huang Y. Boundary feedback anticontrol of spatiotemporal chaos for 1D hyperbolic dynamical systems. Int J Bifur & Chaos , 2004, 14: 1705-1723
doi: 10.1142/S021812740401031X
9 Huang Y, Chen G, Ma D W. Rapid ?uctuations of chaotic maps on ?N, J Math Anal Appl , 2006, 323: 228-252
doi: 10.1016/j.jmaa.2005.10.019
10 Huang Y, Feng Z. In?nite-dimensional dynamical systems induced by interval maps. Dyn Contin Discrete Impuls Syst, Ser A, Math Anal , 2006, 13(3-4): 509-524
11 Huang Y, Jiang X M, Zou X. Dynamics in numerics II: on a discrete predator-prey model. Diff Eqns Dyan Syst (in press)
12 Huang Y, Luo J, Zhou Z L. Rapid ?uctuations of snapshots of one-dimensional linear wave equation with a Van der Pol nonlinear boundary condition. Int J Bifur & Chaos , 2005, 15: 567-580
doi: 10.1142/S0218127405012223
13 Kennedy J, Yorke J A. Topological horseshoe. Trans Amer Math Soc , 2001, 353: 2513-2530
doi: 10.1090/S0002-9947-01-02586-7
14 Marotto F R. Snap-back repellers imply chaos in ?n. J Math Anal Appl , 1978, 63: 199-223
doi: 10.1016/0022-247X(78)90115-4
15 Marotto F R. On rede?ning a snap-back repeller. Chaos Solitons, and Fractals , 2005, 25: 25-28
doi: 10.1016/j.chaos.2004.10.003
16 Zhang Z S. Shift-invariant sets of endomorphisms. Acta Math Sinica , 1984, 27(4): 564-576 (in Chinese)
17 Zhou Z L. Symbolic Dynamics. Shanghai: Shanghai Scienti?c and Technological Education Publishing House, 1997 (in Chinese)
[1] Yuhan ZHANG, Junyang GAO, Jianyong QIAO, Qinghua WANG. Dynamics of a family of rational maps concerning renormalization transformation[J]. Front. Math. China, 2020, 15(4): 807-833.
[2] Yun XUE, Yimin XIAO. Fractal and smoothness properties of space-time Gaussian models[J]. Front Math Chin, 2011, 6(6): 1217-1248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed