Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (4) : 807-833    https://doi.org/10.1007/s11464-020-0854-9
RESEARCH ARTICLE
Dynamics of a family of rational maps concerning renormalization transformation
Yuhan ZHANG1, Junyang GAO1(), Jianyong QIAO2, Qinghua WANG1
1. School of Science, China University of Mining and Technology, Beijing 100083, China
2. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
 Download: PDF(587 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Considering a family of rational maps Tnλconcerning renormalization transformation, we give a perfect description about the dynamical properties of Tnλ and the topological properties of the Fatou components F (Tnλ). Furthermore, we discuss the continuity of the Hausdorff dimension HD(J (Tnλ)) about real parameter λ.

Keywords Completely invariant domain      quasi-circle      Hausdorff dimension      renormalization transformation     
Corresponding Author(s): Junyang GAO   
Issue Date: 09 September 2020
 Cite this article:   
Yuhan ZHANG,Junyang GAO,Jianyong QIAO, et al. Dynamics of a family of rational maps concerning renormalization transformation[J]. Front. Math. China, 2020, 15(4): 807-833.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0854-9
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I4/807
1 A F Beardon. Iteration of Rational Functions. New York: Springer-Verlag, 1991
https://doi.org/10.1007/978-1-4612-4422-6
2 P M Bleher, M Y Lyubich. Julia sets and complex singularities in hierarchical Ising models. Comm Math Phys, 1991, 141(3): 453–474
https://doi.org/10.1007/BF02102810
3 L Carleson, T W Gamelin. Complex Dynamics. New York: Springer-Verlag, 1993
https://doi.org/10.1007/978-1-4612-4364-9
4 L Carleson, P W Jones, J C Yoccoz. Julia and John. Bull Braz Math Soc, 1994, 25(1): 1–30
https://doi.org/10.1007/BF01232933
5 P Collet, J-P Eckmann. Iterated Map on the Interval as Dynamical Systems. Boston: Birkhäuser, 2009
https://doi.org/10.1007/978-0-8176-4927-2
6 M Denker, M Urbanski. Hausdorff measures on Julia sets of subexpanding rational maps. Israel J Math, 1991, 76(1-2): 193–214
https://doi.org/10.1007/BF02782852
7 B Derrida, L De Seze, C Itzykson. Fractal structure of zeros in hierarchical models. J Stat Phys, 1983, 33(3): 559–569
https://doi.org/10.1007/BF01018834
8 B Derrida, C Itzykson, J M Luck. Oscillatory critical amplitudes in hierarchical models. Comm Math Phys, 1984, 94(1): 115–132
https://doi.org/10.1007/BF01212352
9 M E Fisher. The nature of critical points. In: Brittin W E. Lectures in Theoretical Physics, Vol VII C: Statistical Physics, Weak Interactions, Field Theory. New York: Gordon Breach, 1965, 1–159
10 J Gao. On quasi-discs and Fatou components of a family of rational maps concerning renormalization transformation. Chaos Solitons Fractals, 2018, 114: 31–37
https://doi.org/10.1016/j.chaos.2018.06.026
11 J Gao, J Qiao, Y Zhai. Misiurewicz points on the Mandelbrot-like set concerning renormalization transformation. Sci China Math, 2014, 57(12): 2539–2548
https://doi.org/10.1007/s11425-014-4872-5
12 T D Lee, C N Yang. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys Rev, 1952, 87(3): 410–419
https://doi.org/10.1103/PhysRev.87.410
13 C T McMullen. Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps. Comment Math Helv, 2000, 75(4): 535–593
https://doi.org/10.1007/s000140050140
14 J Milnor. Dynamics in One Complex Variable. 3rd ed. Ann of Math Stud, Vol 160. Princeton: Princeton Univ Press, 2006
15 J L Monroe. Julia sets associated with the Potts model on the Bethe lattice and other recursively solved systems. J Phys A, 2001, 34(33): 6405–6412
https://doi.org/10.1088/0305-4470/34/33/305
16 C Pommerenke. Boundary Behaviour of Conformal Maps. Grundlehren Math Wiss, Vol 299. Berlin: Springer, 1992
https://doi.org/10.1007/978-3-662-02770-7
17 J Qiao. On the preimages of parabolic periodic points. Nonlinearity, 2000, 13(3): 813–818
https://doi.org/10.1088/0951-7715/13/3/316
18 J Qiao. Julia sets and complex singularities in diamond-like hierarchical Potts models. Sci China Ser A: Math, 2005, 48(3): 388–412
https://doi.org/10.1360/04ys0180
19 J Qiao, Y Li. On connectivity of Julia sets of Yang-Lee zeros. Comm Math Phys, 2001, 222(2): 319–326
https://doi.org/10.1007/s002200100507
20 J Qiao, Y Yin, J Gao. Feigenbaum Julia sets of singularities of free energy. Ergodic Theory Dynam Systems, 2010, 30(5): 1573–1591
https://doi.org/10.1017/S0143385709000522
21 W Qiu, X Wang, Y Yin. Dynamics of McMullen maps. Adv Math, 2012, 229(4): 2525–2577
https://doi.org/10.1016/j.aim.2011.12.026
22 J Qiao. Julia Sets and Complex Singularities of Free Energies. Mem Amer Math Soc, Vol 234, No 1102. Providence: Amer Math Soc, 2015
https://doi.org/10.1090/memo/1102
23 J Rivera-Letelier. On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets. Fund Math, 2001, 170(3): 287–317
https://doi.org/10.4064/fm170-3-6
24 D Ruelle. Repellers for real analytic maps. Ergodic Theory Dynam Systems, 1982, 2(1): 99–107
https://doi.org/10.1017/S0143385700009603
25 D Sullivan. Conformal Dynamical Systems. Berlin: Springer, 1983
26 X Wang, W Qiu, Y Yin, J Qiao, J Gao. Connectivity of the Mandelbrot set for the family of renormalization transformations. Sci China Math, 2010, 53(3): 849–862
https://doi.org/10.1007/s11425-010-0034-6
27 K G Wilson. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys Rev B, 1971, 4(9): 3174–3183
https://doi.org/10.1103/PhysRevB.4.3174
28 C N Yang, T D Lee. Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys Rev, 1952, 87(3): 404–409
https://doi.org/10.1103/PhysRev.87.404
29 F Yang, J Zeng. On the dynamics of a family of generated renormalization transformations. J Math Anal Appl, 2014, 413(1): 361–377
https://doi.org/10.1016/j.jmaa.2013.11.068
[1] Yun XUE, Yimin XIAO. Fractal and smoothness properties of space-time Gaussian models[J]. Front Math Chin, 2011, 6(6): 1217-1248.
[2] Yu HUANG, Yi ZHOU. Rapid fluctuation for topological dynamical systems[J]. Front Math Chin, 2009, 4(3): 483-494.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed