|
|
Dynamics of a family of rational maps concerning renormalization transformation |
Yuhan ZHANG1, Junyang GAO1( ), Jianyong QIAO2, Qinghua WANG1 |
1. School of Science, China University of Mining and Technology, Beijing 100083, China 2. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract Considering a family of rational maps concerning renormalization transformation, we give a perfect description about the dynamical properties of and the topological properties of the Fatou components F (). Furthermore, we discuss the continuity of the Hausdorff dimension HD(J ()) about real parameter λ.
|
Keywords
Completely invariant domain
quasi-circle
Hausdorff dimension
renormalization transformation
|
Corresponding Author(s):
Junyang GAO
|
Issue Date: 09 September 2020
|
|
1 |
A F Beardon. Iteration of Rational Functions. New York: Springer-Verlag, 1991
https://doi.org/10.1007/978-1-4612-4422-6
|
2 |
P M Bleher, M Y Lyubich. Julia sets and complex singularities in hierarchical Ising models. Comm Math Phys, 1991, 141(3): 453–474
https://doi.org/10.1007/BF02102810
|
3 |
L Carleson, T W Gamelin. Complex Dynamics. New York: Springer-Verlag, 1993
https://doi.org/10.1007/978-1-4612-4364-9
|
4 |
L Carleson, P W Jones, J C Yoccoz. Julia and John. Bull Braz Math Soc, 1994, 25(1): 1–30
https://doi.org/10.1007/BF01232933
|
5 |
P Collet, J-P Eckmann. Iterated Map on the Interval as Dynamical Systems. Boston: Birkhäuser, 2009
https://doi.org/10.1007/978-0-8176-4927-2
|
6 |
M Denker, M Urbanski. Hausdorff measures on Julia sets of subexpanding rational maps. Israel J Math, 1991, 76(1-2): 193–214
https://doi.org/10.1007/BF02782852
|
7 |
B Derrida, L De Seze, C Itzykson. Fractal structure of zeros in hierarchical models. J Stat Phys, 1983, 33(3): 559–569
https://doi.org/10.1007/BF01018834
|
8 |
B Derrida, C Itzykson, J M Luck. Oscillatory critical amplitudes in hierarchical models. Comm Math Phys, 1984, 94(1): 115–132
https://doi.org/10.1007/BF01212352
|
9 |
M E Fisher. The nature of critical points. In: Brittin W E. Lectures in Theoretical Physics, Vol VII C: Statistical Physics, Weak Interactions, Field Theory. New York: Gordon Breach, 1965, 1–159
|
10 |
J Gao. On quasi-discs and Fatou components of a family of rational maps concerning renormalization transformation. Chaos Solitons Fractals, 2018, 114: 31–37
https://doi.org/10.1016/j.chaos.2018.06.026
|
11 |
J Gao, J Qiao, Y Zhai. Misiurewicz points on the Mandelbrot-like set concerning renormalization transformation. Sci China Math, 2014, 57(12): 2539–2548
https://doi.org/10.1007/s11425-014-4872-5
|
12 |
T D Lee, C N Yang. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys Rev, 1952, 87(3): 410–419
https://doi.org/10.1103/PhysRev.87.410
|
13 |
C T McMullen. Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps. Comment Math Helv, 2000, 75(4): 535–593
https://doi.org/10.1007/s000140050140
|
14 |
J Milnor. Dynamics in One Complex Variable. 3rd ed. Ann of Math Stud, Vol 160. Princeton: Princeton Univ Press, 2006
|
15 |
J L Monroe. Julia sets associated with the Potts model on the Bethe lattice and other recursively solved systems. J Phys A, 2001, 34(33): 6405–6412
https://doi.org/10.1088/0305-4470/34/33/305
|
16 |
C Pommerenke. Boundary Behaviour of Conformal Maps. Grundlehren Math Wiss, Vol 299. Berlin: Springer, 1992
https://doi.org/10.1007/978-3-662-02770-7
|
17 |
J Qiao. On the preimages of parabolic periodic points. Nonlinearity, 2000, 13(3): 813–818
https://doi.org/10.1088/0951-7715/13/3/316
|
18 |
J Qiao. Julia sets and complex singularities in diamond-like hierarchical Potts models. Sci China Ser A: Math, 2005, 48(3): 388–412
https://doi.org/10.1360/04ys0180
|
19 |
J Qiao, Y Li. On connectivity of Julia sets of Yang-Lee zeros. Comm Math Phys, 2001, 222(2): 319–326
https://doi.org/10.1007/s002200100507
|
20 |
J Qiao, Y Yin, J Gao. Feigenbaum Julia sets of singularities of free energy. Ergodic Theory Dynam Systems, 2010, 30(5): 1573–1591
https://doi.org/10.1017/S0143385709000522
|
21 |
W Qiu, X Wang, Y Yin. Dynamics of McMullen maps. Adv Math, 2012, 229(4): 2525–2577
https://doi.org/10.1016/j.aim.2011.12.026
|
22 |
J Qiao. Julia Sets and Complex Singularities of Free Energies. Mem Amer Math Soc, Vol 234, No 1102. Providence: Amer Math Soc, 2015
https://doi.org/10.1090/memo/1102
|
23 |
J Rivera-Letelier. On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets. Fund Math, 2001, 170(3): 287–317
https://doi.org/10.4064/fm170-3-6
|
24 |
D Ruelle. Repellers for real analytic maps. Ergodic Theory Dynam Systems, 1982, 2(1): 99–107
https://doi.org/10.1017/S0143385700009603
|
25 |
D Sullivan. Conformal Dynamical Systems. Berlin: Springer, 1983
|
26 |
X Wang, W Qiu, Y Yin, J Qiao, J Gao. Connectivity of the Mandelbrot set for the family of renormalization transformations. Sci China Math, 2010, 53(3): 849–862
https://doi.org/10.1007/s11425-010-0034-6
|
27 |
K G Wilson. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys Rev B, 1971, 4(9): 3174–3183
https://doi.org/10.1103/PhysRevB.4.3174
|
28 |
C N Yang, T D Lee. Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys Rev, 1952, 87(3): 404–409
https://doi.org/10.1103/PhysRev.87.404
|
29 |
F Yang, J Zeng. On the dynamics of a family of generated renormalization transformations. J Math Anal Appl, 2014, 413(1): 361–377
https://doi.org/10.1016/j.jmaa.2013.11.068
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|