Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2011, Vol. 6 Issue (6) : 1217-1248    https://doi.org/10.1007/s11464-011-0126-9
RESEARCH ARTICLE
Fractal and smoothness properties of space-time Gaussian models
Yun XUE, Yimin XIAO()
Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
 Download: PDF(309 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Spatio-temporal models are widely used for inference in statistics and many applied areas. In such contexts, interests are often in the fractal nature of the sample surfaces and in the rate of change of the spatial surface at a given location in a given direction. In this paper, we apply the theory of Yaglom (1957) to construct a large class of space-time Gaussian models with stationary increments, establish bounds on the prediction errors, and determine the smoothness properties and fractal properties of this class of Gaussian models. Our results can be applied directly to analyze the stationary spacetime models introduced by Cressie and Huang (1999), Gneiting (2002), and Stein (2005), respectively.

Keywords Space-time model      anisotropic Gaussian field      prediction error      mean square differentiability      sample path differentiability      Hausdorff dimension     
Corresponding Author(s): XIAO Yimin,Email:xiao@stt.msu.edu   
Issue Date: 01 December 2011
 Cite this article:   
Yun XUE,Yimin XIAO. Fractal and smoothness properties of space-time Gaussian models[J]. Front Math Chin, 2011, 6(6): 1217-1248.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-011-0126-9
https://academic.hep.com.cn/fmc/EN/Y2011/V6/I6/1217
1 Adler R J. The Geometry of Random Fields. New York: Wiley, 1981
2 Adler R J, Taylor J E. Random Fields and Geometry. New York: Springer, 2007
3 Anderes E B, Stein M L. Estimating deformations of isotropic Gaussian random fields on the plane. Ann Statist , 2008, 36: 719-741
doi: 10.1214/009053607000000893
4 Banerjee S, Gelfand A E. On smoothness properties of spatial processes. J Multivariate Anal , 2003, 84: 85-100
doi: 10.1016/S0047-259X(02)00016-7
5 Banerjee S, Gelfand A E, Sirmans C F. Directional rates of change under spatial process models. J Amer Statistical Assoc , 2003, 98: 946-954
doi: 10.1198/C16214503000000909
6 Berg C, Forst G. Potential Theory on Locally Compact Abelian Groups. New York-Heidelberg: Springer-Verlag, 1975
7 Calder C A, Cressie N. Some topics in convolution-based spatial modeling. In: Proceedings of the 56th Session of the International Statistics Institute, Lisbon, Portugal . 2007
8 Chan G, Wood A T A. Increment-based estimators of fractal dimension for twodimensional surface data. Statist Sinica , 2000, 10: 343-376
9 Chan G, Wood A T A. Estimation of fractal dimension for a class of non-Gaussian stationary processes and fields. Ann Statist , 2004, 32: 1222-1260
doi: 10.1214/009053604000000346
10 Constantine A G, Hall P. Characterizing surface smoothness via estimation of effective fractal dimension. J Roy Statist Soc Ser B , 1994, 56: 97-113
11 Cramér H, Leadbetter M R. Stationary and Related Stochastic Processes. New York: John Wiley & Sons, Inc, 1967
12 Cressie N. Statistics for Spatial Data (rev ed). New York: Wiley, 1993
13 Cressie N, Huang H-C. Classes of nonseparable, spatiotemporal stationary covariance functions. J Amer Statist Assoc, 1999, 94: 1330-1340
doi: 10.2307/2669946
14 Davies S, Hall P. Fractal analysis of surface roughness by using spatial data (with discussion). J Roy Statist Soc Ser B , 1999, 61: 3-37
doi: 10.1111/1467-9868.00160
15 de Iaco S, Myers D E, Posa D. Space-Time analysis using a general product-sum model. Statist Probab Letters , 2001, 52: 21-28
doi: 10.1016/S0167-7152(00)00200-5
16 de Iaco S, Myers D E, Posa D. Nonseparable space-time covariance models: some parametric families. Math Geology , 2002, 34: 23-42
doi: 10.1023/A:1014075310344
17 de Iaco S, Myers D E, Posa D. The linear coregionalization model and the product-sum space-time variogram. Math Geology , 2003, 35: 25-38
doi: 10.1023/A:1022425111459
18 Falconer K J. Fractal Geometry—Mathematical Foundations and Applications. New York: Wiley & Sons, 1990
19 Fuentes M. Spectral methods for nonstationary spatial processes. 2002, 89: 197-210
20 Fuentes M. A formal test for nonstationarity of spatial stochastic processes. J Multivariate Anal , 2005, 96: 30-54
doi: 10.1016/j.jmva.2004.09.003
21 Gneiting T. Nonseparable, stationary covariance functions for space-time data. J Amer Statist Assoc , 2002, 97: 590-600
doi: 10.1198/016214502760047113
22 Gneiting T, Kleiber W, Schlather M. Matérn cross-covariance functions for multivariate random fields. Preprint , 2009
23 Hall P, Wood A T A. On the performance of box-counting estimators of fractal dimension. Biometrika , 1993, 80: 246-252
doi: 10.1093/biomet/80.1.246
24 Higdon D. Space and space-time modeling using process convolutions. In: Anderson C, Barnett V, Chatwin P C, El-Shaarawi A H, eds. Quantitative Methods for Current Environmental Issues . New York: Springer-Verlag, 2002, 37-56
doi: 10.1007/978-1-4471-0657-9_2
25 Higdon D, Swall J, Kern J. Nonstationary spatial modeling. In: Bernardo J M, , eds. Bayesian Statistics , Vol 6. Oxford: Oxford University Press, 1999, 761-768
26 Jones R H, Zhang Y. Models for continuous stationary space-time processes. In: Gregoire T G, Brillinger D R, Diggle P J, Russek-Cohen E, Warren W G, Wolfinger R D, eds. Modelling Longitudinal and Spatially Correlated Data. Lecture Notes in Statist, No 122 . New York: Springer, 1997, 289-298
doi: 10.1007/978-1-4612-0699-6_25
27 Kahane J-P. Some Random Series of Functions. 2nd ed. Cambridge: Cambridge University Press, 1985
28 Kent J T, Wood A T A. Estimating the fractal dimension of a locally self-similar Gaussian process by using increments. J Roy Statist Soc Ser B , 1997, 59: 679-699
29 Kolovos A, Christakos G, Hristopulos D T, Serre M L. Methods for generating nonseparable spatiotemporal covariance models with potential environmental applications. Adv Water Resour , 2004, 27: 815-830
doi: 10.1016/j.advwatres.2004.04.002
30 Kyriakidis P C, Journe A G. Geostatistical space-time models: a review. Math Geology , 1999, 31: 651-684
doi: 10.1023/A:1007528426688
31 Ma C. Families of spatio-temporal stationary covariance models. J Statist Plan Infer , 2003, 116: 489-501
doi: 10.1016/S0378-3758(02)00353-1
32 Ma C. Spatio-temporal stationary covariance models. J Multivariate Anal , 2003, 86: 97-107
doi: 10.1016/S0047-259X(02)00014-3
33 Ma C. Spatial autoregression and related spatio-temporal models. J Multivariate Anal , 2004, 88: 152-162
doi: 10.1016/S0047-259X(03)00067-8
34 Ma C. Spatio-temporal variograms and covariance models. Adv Appl Probab , 2005, 37: 706-725
doi: 10.1239/aap/1127483743
35 Ma C. A class of stationary random fields with a simple correlation structure. J Multivariate Anal , 2005, 94: 313-327
doi: 10.1016/j.jmva.2004.05.007
36 Ma C. Stationary random fields in space and time with rational spectral densities. IEEE Trans Inform Th , 2007, 53: 1019-1029
doi: 10.1109/TIT.2006.890721
37 Ma C. Recent developments on the construction of spatio-temporal covariance models. Stoch Environ Res Risk Assess , 2008, 22(suppl 1): 39-47
doi: 10.1007/s00477-007-0154-x
38 Meerschaert M M, Wang W, Xiao Y. Fernique-type inequalities and moduli of continuity of anisotropic Gaussian random fields. Trans Amer Math Soc (to appear)
39 Paciorek C J, Schervish M J. Spatial modelling using a new class of nonstationary covariance functions. Environmetrics , 2006, 17: 483-506
doi: 10.1002/env.785
40 Schmidt A, O’Hagan A. Bayesian inference for nonstationary spatial covariance structure via spatial deformation. J Roy Statist Soc Ser B , 2003, 65: 745-758
doi: 10.1111/1467-9868.00413
41 Stein M L. Interpolation of Spatial Data: Some Theory for Kriging. New York: Springer, 1999
doi: 10.1007/978-1-4612-1494-6
42 Stein M L. Space-time covariance functions. J Amer Statist Assoc , 2005, 100: 310-321
doi: 10.1198/016214504000000854
43 Xiao Y. Strong local nondeterminism of Gaussian random fields and its applications. In: Lai T-L, Shao Q-M, Qian L, eds. Asymptotic Theory in Probability and Statistics with Applications . Beijing: Higher Education Press, 2007, 136-176
44 Xiao Y. Sample path properties of anisotropic Gaussian random fields. In: Khoshnevisan D, Rassoul-Agha F, eds. A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Math , Vol 1962. New York: Springer, 2009, 145-212
doi: 10.1007/978-3-540-85994-9_5
45 Xiao Y. Properties of strong local nondeterminism and local times of stable random fields. In: Dalang R, Dozzi M, Russo F, eds. Stochastic Analysis, Random Fields and Applications VI. Progress in Probability 63 . Basel: Birkh?user, 2011, 279-310
doi: 10.1007/978-3-0348-0021-1_18
46 Yaglom A M. Some classes of random fields in n-dimensional space, related to stationary random processes. Th Probab Appl , 1957, 2: 273-320
doi: 10.1137/1102021
47 Zhu Z, Stein M L. Parameter estimation for fractional Brownian surfaces. Statist Sinica , 2002, 12: 863-883
[1] Yuhan ZHANG, Junyang GAO, Jianyong QIAO, Qinghua WANG. Dynamics of a family of rational maps concerning renormalization transformation[J]. Front. Math. China, 2020, 15(4): 807-833.
[2] Zhenlong CHEN,Dongsheng WU,Yimin XIAO. Smoothness of local times and self-intersection local times of Gaussian random fields[J]. Front. Math. China, 2015, 10(4): 777-805.
[3] Yu HUANG, Yi ZHOU. Rapid fluctuation for topological dynamical systems[J]. Front Math Chin, 2009, 4(3): 483-494.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed