|
|
|
Smoothness of local times and self-intersection local times of Gaussian random fields |
Zhenlong CHEN1,Dongsheng WU2,Yimin XIAO3,*( ) |
1. School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China 2. Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA 3. Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA |
|
|
|
|
Abstract This paper is concerned with the smoothness (in the sense of Meyer- Watanabe) of the local times of Gaussian random fields. Sufficient and necessary conditions for the existence and smoothness of the local times, collision local times, and self-intersection local times are established for a large class of Gaussian random fields, including fractional Brownian motions, fractional Brownian sheets and solutions of stochastic heat equations driven by space-time Gaussian noise.
|
| Keywords
Anisotropic Gaussian field
local time
collision local time
intersection local time
self-intersection local time
chaos expansion
|
|
Corresponding Author(s):
Yimin XIAO
|
|
Issue Date: 05 June 2015
|
|
| 1 |
Ayache A, Wu D, Xiao Y. Joint continuity of the local times of fractional Brownian sheets. Ann Inst Henri Poincaré Probab Stat, 2008, 44: 727-748
https://doi.org/10.1214/07-AIHP131
|
| 2 |
Ayache A, Xiao Y. Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets. J Fourier Anal Appl, 2005, 11: 407-439
https://doi.org/10.1007/s00041-005-4048-3
|
| 3 |
Biermé H, Lacaux C, Xiao Y. Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields. Bull Lond Math Soc, 2009, 41: 253-273
https://doi.org/10.1112/blms/bdn122
|
| 4 |
Chen C, Yan L. Remarks on the intersection local time of fractional Brownian motions. Statist Probab Lett, 2011, 81: 1003-1012
https://doi.org/10.1016/j.spl.2011.01.021
|
| 5 |
Chen Z, Xiao Y. On intersections of independent anisotropic Gaussian random fields. Sci China Math, 2012, 55: 2217-2232
https://doi.org/10.1007/s11425-012-4521-9
|
| 6 |
Dalang R C, Mueller C, Xiao Y. Polarity of points for a wide class of Gaussian random fields. Preprint, 2015
|
| 7 |
Eddahbi M, Lacayo R, Solé J L, Vives J, Tudor C A. Regularity of the local time for the d-dimensional fractional Brownian motion with N-parameters. Stoch Anal Appl, 2005, 23: 383-400
https://doi.org/10.1081/SAP-200050121
|
| 8 |
Eddahbi M, Lacayo R, Solé J L, Vives J, Tudor C A. Renormalization of the local time for the d-dimensional fractional Brownian motion with N parameters. Nagoya Math J, 2007, 186: 173-191
|
| 9 |
Eddahbi M, Vives J. Chaotic expansion and smoothness of some functionals of the fractional Brownian motion. J Math Kyoto Univ, 2003, 43: 349-368
|
| 10 |
Geman D, Horowitz J. Occupation densities. Ann Probab, 1980, 8: 1-67
https://doi.org/10.1214/aop/1176994824
|
| 11 |
Hu Y. Self-intersection local time of fractional Brownian motion—via chaos expansion. J Math Kyoto Univ, 2001, 41: 233-250
|
| 12 |
Hu Y, ?ksendal B. Chaos expansion of local time of fractional Brownian motions. Stoch Anal Appl, 2002, 20: 815-837
https://doi.org/10.1081/SAP-120006109
|
| 13 |
Hu Y, Nualart D. Renormalized self-intersection local time for fractional Brownian motion. Ann Probab, 2005, 33: 948-983
https://doi.org/10.1214/009117905000000017
|
| 14 |
Imkeller P, Perez-Abreu V, Vives J. Chaos expansion of double intersection local time of Brownian motion in ?d and renormalization. Stochastic Process Appl, 1995, 56: 1-34
|
| 15 |
Imkeller P, Weisz F. The asymptotic behaviour of local times and occupation integrals of the N-parameter Wiener process in ?d. Probab Theory Related Fields, 1994, 98: 47-75
|
| 16 |
Imkeller P, Weisz F. Critical dimensions for the existence of self-intersection local times of the Brownian sheet in ?d. In: Seminar on Stochastic Analysis, Random Fields and Applications (Ascona, 1993). Progr Probab, 36. Basel: Birkh?user, 1995, 151-168
https://doi.org/10.1007/978-3-0348-7026-9_11
|
| 17 |
Imkeller P, Weisz F. Critical dimensions for the existence of self-intersection local times of the N parameter Brownian motion in ?d. J Theoret Probab, 1999, 12: 721-737
|
| 18 |
Jiang Y, Wang Y. Self-intersection local times and collision local times of bifractional Brownian motions. Sci China Math, 2009, 52: 1905-1919
https://doi.org/10.1007/s11425-009-0081-z
|
| 19 |
Meyer P A. Quantum for Probabilists. Lecture Notes in Math, Vol 1538. Heidelberg: Springer, 1993
|
| 20 |
Mueller C, Tribe R. Hitting properties of a random string. Electron J Probab, 2002, 7: 1-29
https://doi.org/10.1214/EJP.v7-109
|
| 21 |
Nualart D. The Malliavin Calculus and Related Topics. New York: Springer, 2006
|
| 22 |
Nualart D, Vives J. Chaos expansion and local time. Publ Mat, 1992, 36: 827-836
https://doi.org/10.5565/PUBLMAT_362B92_07
|
| 23 |
Pitt L P. Local times for Gaussian vector fields. Indiana UnivMath J, 1978, 27: 309-330
https://doi.org/10.1512/iumj.1978.27.27024
|
| 24 |
Shen G, Yan L. Smoothness for the collision local times of bifractional Brownian motions. Sci China Math, 2011, 54: 1859-1873
https://doi.org/10.1007/s11425-011-4228-3
|
| 25 |
Shen G, Yan L, Chen C. Smoothness for the collision local time of two multidimensional bifractional Brownian motions. Czechoslovak Math J, 2012, 62: 969-989
https://doi.org/10.1007/s10587-012-0077-7
|
| 26 |
Tudor C, Xiao Y. Sample paths of the solution to the fractional-colored stochastic heat equation. Preprint, 2015
|
| 27 |
Watanabe S. Stochastic Differential Equation and Malliavian Calculus. Tata Institute of Fundamental Research. Berlin: Springer, 1984
|
| 28 |
Wu D, Xiao Y. Fractal properties of the random string process. IMS Lecture Notes Monogr Ser–High Dimensional Probability, 2006, 51: 128-147
|
| 29 |
Wu D, Xiao Y. Geometric properties of the images of fractional Brownian sheets. J Fourier Anal Appl, 2007, 13: 1-37
https://doi.org/10.1007/s00041-005-5078-y
|
| 30 |
Wu D, Xiao Y. Regularity of intersection local times of fractional Brownian motions. J Theoret Probab, 2010, 23: 972-1001
https://doi.org/10.1007/s10959-009-0221-y
|
| 31 |
Wu D, Xiao Y. On local times of anisotropic Gaussian random fields. Commun Stoch Anal, 2011, 5: 15-39
|
| 32 |
Xiao Y. Sample path properties of anisotropic Gaussian random fields. In: Khoshnevisan D, Rassoul-Agha F, eds. A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Math, Vol 1962. New York: Springer, 2009, 145-212
https://doi.org/10.1007/978-3-540-85994-9_5
|
| 33 |
Xiao Y, Zhang T. Local times of fractional Brownian sheets. Probab Theory Related Fields, 2002, 124: 204-226
https://doi.org/10.1007/s004400200210
|
| 34 |
Yan L, Liu J, Chen C. On the collision local time of bifractional Brownian motions. Stoch Dyn, 2009, 9: 479-491
https://doi.org/10.1142/S0219493709002749
|
| 35 |
Yan L, Shen G. On the collision local time of sub-fractional Brownian motions. Statist Probab Lett, 2010, 80: 296-308
https://doi.org/10.1016/j.spl.2009.11.003
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|