Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (4) : 777-805    https://doi.org/10.1007/s11464-015-0487-6
RESEARCH ARTICLE
Smoothness of local times and self-intersection local times of Gaussian random fields
Zhenlong CHEN1,Dongsheng WU2,Yimin XIAO3,*()
1. School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
2. Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA
3. Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
 Download: PDF(250 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper is concerned with the smoothness (in the sense of Meyer- Watanabe) of the local times of Gaussian random fields. Sufficient and necessary conditions for the existence and smoothness of the local times, collision local times, and self-intersection local times are established for a large class of Gaussian random fields, including fractional Brownian motions, fractional Brownian sheets and solutions of stochastic heat equations driven by space-time Gaussian noise.

Keywords Anisotropic Gaussian field      local time      collision local time      intersection local time      self-intersection local time      chaos expansion     
Corresponding Author(s): Yimin XIAO   
Issue Date: 05 June 2015
 Cite this article:   
Zhenlong CHEN,Dongsheng WU,Yimin XIAO. Smoothness of local times and self-intersection local times of Gaussian random fields[J]. Front. Math. China, 2015, 10(4): 777-805.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0487-6
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I4/777
1 Ayache A, Wu D, Xiao Y. Joint continuity of the local times of fractional Brownian sheets. Ann Inst Henri Poincaré Probab Stat, 2008, 44: 727-748
https://doi.org/10.1214/07-AIHP131
2 Ayache A, Xiao Y. Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets. J Fourier Anal Appl, 2005, 11: 407-439
https://doi.org/10.1007/s00041-005-4048-3
3 Biermé H, Lacaux C, Xiao Y. Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields. Bull Lond Math Soc, 2009, 41: 253-273
https://doi.org/10.1112/blms/bdn122
4 Chen C, Yan L. Remarks on the intersection local time of fractional Brownian motions. Statist Probab Lett, 2011, 81: 1003-1012
https://doi.org/10.1016/j.spl.2011.01.021
5 Chen Z, Xiao Y. On intersections of independent anisotropic Gaussian random fields. Sci China Math, 2012, 55: 2217-2232
https://doi.org/10.1007/s11425-012-4521-9
6 Dalang R C, Mueller C, Xiao Y. Polarity of points for a wide class of Gaussian random fields. Preprint, 2015
7 Eddahbi M, Lacayo R, Solé J L, Vives J, Tudor C A. Regularity of the local time for the d-dimensional fractional Brownian motion with N-parameters. Stoch Anal Appl, 2005, 23: 383-400
https://doi.org/10.1081/SAP-200050121
8 Eddahbi M, Lacayo R, Solé J L, Vives J, Tudor C A. Renormalization of the local time for the d-dimensional fractional Brownian motion with N parameters. Nagoya Math J, 2007, 186: 173-191
9 Eddahbi M, Vives J. Chaotic expansion and smoothness of some functionals of the fractional Brownian motion. J Math Kyoto Univ, 2003, 43: 349-368
10 Geman D, Horowitz J. Occupation densities. Ann Probab, 1980, 8: 1-67
https://doi.org/10.1214/aop/1176994824
11 Hu Y. Self-intersection local time of fractional Brownian motion—via chaos expansion. J Math Kyoto Univ, 2001, 41: 233-250
12 Hu Y, ?ksendal B. Chaos expansion of local time of fractional Brownian motions. Stoch Anal Appl, 2002, 20: 815-837
https://doi.org/10.1081/SAP-120006109
13 Hu Y, Nualart D. Renormalized self-intersection local time for fractional Brownian motion. Ann Probab, 2005, 33: 948-983
https://doi.org/10.1214/009117905000000017
14 Imkeller P, Perez-Abreu V, Vives J. Chaos expansion of double intersection local time of Brownian motion in ?d and renormalization. Stochastic Process Appl, 1995, 56: 1-34
15 Imkeller P, Weisz F. The asymptotic behaviour of local times and occupation integrals of the N-parameter Wiener process in ?d. Probab Theory Related Fields, 1994, 98: 47-75
16 Imkeller P, Weisz F. Critical dimensions for the existence of self-intersection local times of the Brownian sheet in ?d. In: Seminar on Stochastic Analysis, Random Fields and Applications (Ascona, 1993). Progr Probab, 36. Basel: Birkh?user, 1995, 151-168
https://doi.org/10.1007/978-3-0348-7026-9_11
17 Imkeller P, Weisz F. Critical dimensions for the existence of self-intersection local times of the N parameter Brownian motion in ?d. J Theoret Probab, 1999, 12: 721-737
18 Jiang Y, Wang Y. Self-intersection local times and collision local times of bifractional Brownian motions. Sci China Math, 2009, 52: 1905-1919
https://doi.org/10.1007/s11425-009-0081-z
19 Meyer P A. Quantum for Probabilists. Lecture Notes in Math, Vol 1538. Heidelberg: Springer, 1993
20 Mueller C, Tribe R. Hitting properties of a random string. Electron J Probab, 2002, 7: 1-29
https://doi.org/10.1214/EJP.v7-109
21 Nualart D. The Malliavin Calculus and Related Topics. New York: Springer, 2006
22 Nualart D, Vives J. Chaos expansion and local time. Publ Mat, 1992, 36: 827-836
https://doi.org/10.5565/PUBLMAT_362B92_07
23 Pitt L P. Local times for Gaussian vector fields. Indiana UnivMath J, 1978, 27: 309-330
https://doi.org/10.1512/iumj.1978.27.27024
24 Shen G, Yan L. Smoothness for the collision local times of bifractional Brownian motions. Sci China Math, 2011, 54: 1859-1873
https://doi.org/10.1007/s11425-011-4228-3
25 Shen G, Yan L, Chen C. Smoothness for the collision local time of two multidimensional bifractional Brownian motions. Czechoslovak Math J, 2012, 62: 969-989
https://doi.org/10.1007/s10587-012-0077-7
26 Tudor C, Xiao Y. Sample paths of the solution to the fractional-colored stochastic heat equation. Preprint, 2015
27 Watanabe S. Stochastic Differential Equation and Malliavian Calculus. Tata Institute of Fundamental Research. Berlin: Springer, 1984
28 Wu D, Xiao Y. Fractal properties of the random string process. IMS Lecture Notes Monogr Ser–High Dimensional Probability, 2006, 51: 128-147
29 Wu D, Xiao Y. Geometric properties of the images of fractional Brownian sheets. J Fourier Anal Appl, 2007, 13: 1-37
https://doi.org/10.1007/s00041-005-5078-y
30 Wu D, Xiao Y. Regularity of intersection local times of fractional Brownian motions. J Theoret Probab, 2010, 23: 972-1001
https://doi.org/10.1007/s10959-009-0221-y
31 Wu D, Xiao Y. On local times of anisotropic Gaussian random fields. Commun Stoch Anal, 2011, 5: 15-39
32 Xiao Y. Sample path properties of anisotropic Gaussian random fields. In: Khoshnevisan D, Rassoul-Agha F, eds. A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Math, Vol 1962. New York: Springer, 2009, 145-212
https://doi.org/10.1007/978-3-540-85994-9_5
33 Xiao Y, Zhang T. Local times of fractional Brownian sheets. Probab Theory Related Fields, 2002, 124: 204-226
https://doi.org/10.1007/s004400200210
34 Yan L, Liu J, Chen C. On the collision local time of bifractional Brownian motions. Stoch Dyn, 2009, 9: 479-491
https://doi.org/10.1142/S0219493709002749
35 Yan L, Shen G. On the collision local time of sub-fractional Brownian motions. Statist Probab Lett, 2010, 80: 296-308
https://doi.org/10.1016/j.spl.2009.11.003
[1] Wenming HONG,Hui YANG,Ke ZHOU. Scaling limit of local time of Sinai’s random walk[J]. Front. Math. China, 2015, 10(6): 1313-1324.
[2] Yingqiu LI,Suxin WANG,Xiaowen ZHOU,Na ZHU. Diffusion occupation time before exiting[J]. Front. Math. China, 2014, 9(4): 843-861.
[3] Yun XUE, Yimin XIAO. Fractal and smoothness properties of space-time Gaussian models[J]. Front Math Chin, 2011, 6(6): 1217-1248.
[4] Xiangjun WANG, Jingjun GUO, Guo JIANG. Collision local times of two independent fractional Brownian motions[J]. Front Math Chin, 2011, 6(2): 325-338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed