Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (6) : 1151-1168    https://doi.org/10.1007/s11464-012-0242-1
RESEARCH ARTICLE
Comparative study on order-reduced methods for linear third-order ordinary differential equations
Zhiru REN()
State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P. O. Box 2719, Beijing 100190, China
 Download: PDF(194 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The linear third-order ordinary differential equation (ODE) can be transformed into a system of two second-order ODEs by introducing a variable replacement, which is different from the common order-reduced approach. We choose the functions p(x) and q(x) in the variable replacement to get different cases of the special order-reduced system for the linear third-order ODE. We analyze the numerical behavior and algebraic properties of the systems of linear equations resulting from the sinc discretizations of these special second-order ODE systems. Then the block-diagonal preconditioner is used to accelerate the convergence of the Krylov subspace iteration methods for solving the discretized system of linear equation. Numerical results show that these order-reduced methods are effective for solving the linear third-order ODEs.

Keywords third-order ordinary differential equation      order-reduced method      sinc discretization      preconditioner      Krylov subspace method     
Corresponding Author(s): REN Zhiru,Email:renzr@lsec.cc.ac.cn   
Issue Date: 01 December 2012
 Cite this article:   
Zhiru REN. Comparative study on order-reduced methods for linear third-order ordinary differential equations[J]. Front Math Chin, 2012, 7(6): 1151-1168.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0242-1
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I6/1151
1 Bai Z Z. Structured preconditioners for nonsingular matrices of block two-by-two structures. Math Comp , 2006, 75: 791-815
doi: 10.1090/S0025-5718-05-01801-6
2 Bai Z Z, Chan R H, Ren Z R. On sinc discretization and banded preconditioning for linear third-order ordinary differential equations. Numer Linear Algebra Appl , 2011, 18: 471-497
doi: 10.1002/nla.738
3 Bai Z Z, Chan R H, Ren Z R. On order-reducible sinc discretization and blockdiagonal preconditioning methods for linear third-order ordinary differential equations. ICMSEC Tech Report, Academy of Mathematics and Systems Science, Chinese Academy of Sciences , 2012
4 Bai Z Z, Huang Y M, Ng M K. On preconditioned iterative methods for Burgers equations. SIAM J Sci Comput , 2007, 29: 415-439
doi: 10.1137/060649124
5 Bai Z Z, Huang Y M, Ng M K. On preconditioned iterative methods for certain timedependent partial differential equations. SIAM J Numer Anal , 2009, 47: 1019-1037
doi: 10.1137/080718176
6 Bai Z Z, Ng M K. Preconditioners for nonsymmetric block Toeplitz-like-plus-diagonal linear systems. Numer Math , 2003, 96: 197-220
doi: 10.1007/s00211-003-0454-0
7 Ford W F. A third-order differential equation. SIAM Rev , 1992, 34: 121-122
doi: 10.1137/1034012
8 Howes F A. The asymptotic solution of a class of third-order boundary-value problems arising in the theory of thin film flows. SIAM J Appl Math , 1983, 43: 993-1004
doi: 10.1137/0143065
9 Lund J, Bowers K. Sinc Methods for Quadrature and Differential Equations. Philadelphia: SIAM, 1992
doi: 10.1137/1.9781611971637
10 Ng M K. Fast iterative methods for symmetric sinc-Galerkin systems. IMA J Numer Anal , 1999, 19: 357-373
doi: 10.1093/imanum/19.3.357
11 Ng M K, Bai Z Z. A hybrid preconditioner of banded matrix approximation and alternating direction implicit iteration for symmetric sinc-Galerkin linear systems. Linear Algebra Appl , 2003, 366: 317-335
doi: 10.1016/S0024-3795(02)00502-5
12 Ng M K, Potts D. Fast iterative methods for sinc systems. SIAM J Matrix Anal Appl , 2002, 24: 581-598
doi: 10.1137/S0895479800369773
13 Smith R C, Bogar G A, Bowers K L, Lund J. The sinc-Galerkin method for fourthorder differential equations. SIAM J Numer Anal , 1991, 28: 760-788
doi: 10.1137/0728041
14 Stenger F. Numerical Methods Based on Sinc and Analytic Functions. Springer Ser Comput Math . New York: Springer-Verlag, 1993
doi: 10.1007/978-1-4612-2706-9
15 Tuck E O, Schwartz L W. A numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows. SIAM Rev , 1990, 32: 453-469
doi: 10.1137/1032079
[1] Yifen KE, Changfeng MA, Zhiru REN. A new alternating positive semidefinite splitting preconditioner for saddle point problems from time-harmonic eddy current models[J]. Front. Math. China, 2018, 13(2): 313-340.
[2] Paul TSUJI, Lexing YING. A sweeping preconditioner for Yee’s finite difference approximation of time-harmonic Maxwell’s equations[J]. Front Math Chin, 2012, 7(2): 347-363.
[3] Jay Gopalakrishnan, Weifeng Qiu. Partial expansion of a Lipschitz domain and some applications[J]. Front Math Chin, 2012, 7(2): 249-272.
[4] JIANG Erxiong. Algorithm for solving shifted skew-symmetric linear system[J]. Front. Math. China, 2007, 2(2): 227-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed