Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2013, Vol. 8 Issue (1) : 85-105    https://doi.org/10.1007/s11464-012-0263-9
RESEARCH ARTICLE
Maximal number of distinct H-eigenpairs for a two-dimensional real tensor
Kelly J. PEARSON, Tan ZHANG()
Department of Mathematics and Statistics, Murray State University, Murray, KY 42071-0009, USA
 Download: PDF(168 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the generalized characteristic polynomial introduced by J. Canny in Generalized characteristic polynomials [J. Symbolic Comput., 1990, 9(3): 241–250], it is immediate that for any m-order n-dimensional real tensor, the number of distinct H-eigenvalues is less than or equal to n(m-1)n-1. However, there is no known bounds on the maximal number of distinct Heigenvectors in general. We prove that for any m≥2, an m-order 2-dimensional tensor A exists such that A has 2(m - 1) distinct H-eigenpairs. We give examples of 4-order 2-dimensional tensors with six distinct H-eigenvalues as well as six distinct H-eigenvectors. We demonstrate the structure of eigenpairs for a higher order tensor is far more complicated than that of a matrix. Furthermore, we introduce a new class of weakly symmetric tensors, called p-symmetric tensors, and show under certain conditions, p-symmetry will effectively reduce the maximal number of distinct H-eigenvectors for a given two-dimensional tensor. Lastly, we provide a complete classification of the H-eigenvectors of a given 4-order 2-dimensional nonnegative p-symmetric tensor. Additionally, we give sufficient conditions which prevent a given 4-order 2-dimensional nonnegative irreducible weakly symmetric tensor from possessing six pairwise distinct H-eigenvectors.

Keywords Symmetric tensor      H-eigenpairs     
Corresponding Author(s): ZHANG Tan,Email:tzhang@murraystate.edu   
Issue Date: 01 February 2013
 Cite this article:   
Kelly J. PEARSON,Tan ZHANG. Maximal number of distinct H-eigenpairs for a two-dimensional real tensor[J]. Front Math Chin, 2013, 8(1): 85-105.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0263-9
https://academic.hep.com.cn/fmc/EN/Y2013/V8/I1/85
1 Canny J. Generalized characteristic polynomials. J Symbolic Comput , 1990, 9(3): 241-250
doi: 10.1016/S0747-7171(08)80012-0
2 Chang K C, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors. J Math Anal Appl , 2009, 350: 416-422
doi: 10.1016/j.jmaa.2008.09.067
3 Chang K C, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci , 2008, 6(2): 507-520
4 Chang K C, Pearson K, Zhang T. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J Matrix Anal Appl , 2011, 32: 806-819
doi: 10.1137/100807120
5 Cartwright D, Sturmfels B. The number of eigenvalues of a tensor. Linear Algebra Appl (to appear)
6 Drineas P, Lim L H. A multilinear spectral theory of hypergraphs and expander hypergraphs. 2005
7 Friedland S, Gaubert S, Han L. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl (to appear)
8 Gaubert S, Gunawardena J. The Perron-Frobenius theorem for homogeneous, monotone functions. Trans Amer Math Soc , 2004, 356(12): 4931-4950
doi: 10.1090/S0002-9947-04-03470-1
9 Konvalina J, Matache V. Palindrome-polynomials with roots on the unit circle. C R Math Acad Sci Soc R Can , 2004, 26(2): 39-44
10 Lim L H. Singular values and eigenvalues of tensors, A variational approach. Proc 1st IEEE International Workshop on Computational Advances of Multi-tensor Adaptive Processing, Dec 13-15, 2005 . 2005, 129-132
11 Lim L H. Multilinear pagerank: measuring higher order connectivity in linked objects. The Internet: Today and Tomorrow, July , 2005
12 Liu Y, Zhou G, Ibrahim N F. An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor. J Comput Appl Math , 2010, 235(1): 286-292
doi: 10.1016/j.cam.2010.06.002
13 Ng M, Qi L, Zhou G. Finding the largest eigenvalue of a nonnegative tensor. SIAM J Matrix Anal Appl , 2009, 31(3): 1090-1099
doi: 10.1137/09074838X
14 Markovsky I, Rao S. Palindromic polynomials, time-reversible systems, and conserved quantities. In: 16th Mediterranean Conference on Control and Automation, Congress Centre, Ajaccio, France , June25-27, 2008
15 Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput , 2005, 40: 1302-1324
doi: 10.1016/j.jsc.2005.05.007
16 Qi L. Eigenvalues and invariants of tensors. J Math Anal Appl , 2007, 325: 1363-1377
doi: 10.1016/j.jmaa.2006.02.071
17 Yang Y, Yang Q. Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM J Matrix Anal Appl , 2010, 31(5): 2517-2530
doi: 10.1137/090778766
18 Zhang T. Existence of real eigenvalues of real tensors. Nonlinear Anal , 2011, 74: 2862-2868
doi: 10.1016/j.na.2011.01.008
[1] Jie WEN, Qin NI, Wenhuan ZHU. Rank-r decomposition of symmetric tensors[J]. Front. Math. China, 2017, 12(6): 1339-1355.
[2] Changqing XU, Yiran XU. Tensor convolutions and Hankel tensors[J]. Front. Math. China, 2017, 12(6): 1357-1373.
[3] Ruijuan ZHAO,Lei GAO,Qilong LIU,Yaotang LI. Criterions for identifying H-tensors[J]. Front. Math. China, 2016, 11(3): 661-678.
[4] Shmuel FRIEDLAND. Best rank one approximation of real symmetric tensors can be chosen symmetric[J]. Front Math Chin, 2013, 8(1): 19-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed