|
|
|
Scaling limits of interacting diffusions in domains |
Zhen-Qing CHEN( ),Wai-Tong(Louis) FAN |
| Department of Mathematics, University of Washington, Seattle, WA 98195, USA |
|
|
|
|
Abstract We survey recent effort in establishing the hydrodynamic limits and the fluctuation limits for a class of interacting diffusions in domains. These systems are introduced to model the transport of positive and negative charges in solar cells. They are general microscopic models that can be used to describe macroscopic phenomena with coupled boundary conditions, such as the population dynamics of two segregated species under competition. Proving these two types of limits represents establishing the functional law of large numbers and the functional central limit theorem, respectively, for the empirical measures of the spatial positions of the particles. We show that the hydrodynamic limit is a pair of deterministic measures whose densities solve a coupled nonlinear heat equations, while the fluctuation limit can be described by a Gaussian Markov process that solves a stochastic partial differential equation.
|
| Keywords
Hydrodynamic limit
fluctuation
interacting diffusion
reflected diffusion
Dirichlet form
non-linear boundary condition
coupled partial differential equation
martingales
stochastic partial differential equation
Guassian process
|
|
Corresponding Author(s):
Zhen-Qing CHEN
|
|
Issue Date: 26 August 2014
|
|
| 1 |
Bass R F, Hsu P. Some potential theory for reflecting Brownian motion in H?lder and Lipschitz domains. Ann Probab, 1991, 19: 486-508 doi: 10.1214/aop/1176990437
|
| 2 |
Billingsley P. Convergence of Probability Measures. 2nd ed. New York: John Wiley, 1999 doi: 10.1002/9780470316962
|
| 3 |
Boldrighini C, De Masi A, Pellegrinotti A. Nonequilibrium fluctuations in particle systems modelling reaction-diffusion equations. Stochastic Process Appl, 1992, 42: 1-30 doi: 10.1016/0304-4149(92)90023-J
|
| 4 |
Brox Th, Rost H. Equilibrium fluctuations of stochastic particle systems: the role of conserved quantities. Ann Probab, 1984, 12: 742-759 doi: 10.1214/aop/1176993225
|
| 5 |
Burdzy K, Chen Z-Q. Discrete approximations to reflected Brownian motion. Ann Probab, 2008, 36: 698-727 doi: 10.1214/009117907000000240
|
| 6 |
Burdzy K, Chen Z-Q. Reflected random walk in fractal domains. Ann Probab, 2011, 41: 2791-2819 doi: 10.1214/12-AOP745
|
| 7 |
Burdzy K, Holyst R, March P. A Fleming-Viot particle representation of Dirichlet Laplacian. Comm Math Phys, 2000, 214: 679-703 doi: 10.1007/s002200000294
|
| 8 |
Burdzy K, Quastel J. An annihilating-branching particle model for the heat equation with average temperature zero. Ann Probab, 2006, 34: 2382-2405 doi: 10.1214/009117906000000511
|
| 9 |
Chen M-F. From Markov Chains to Non-Equilibrium Particle Systems. 2nd ed. Singapore: World Scientific, 2003
|
| 10 |
Chen Z-Q. On reflecting diffusion processes and Skorokhod decompositions. Probab Theory Related Fields, 1993, 94: 281-316 doi: 10.1007/BF01199246
|
| 11 |
Chen Z-Q, Fan W-T. Hydrodynamic limits and propagation of chaos for interacting random walks in domains. arXiv: 1311.2325
|
| 12 |
Chen Z-Q, Fan W-T. Systems of interacting diffusions with partial annihilations through membranes. arXiv: 1403.5903
|
| 13 |
Chen Z-Q, Fan W-T. Functional central limit theorem for Brownian particles in domains with Robin boundary condition. arXiv: 1404.1442
|
| 14 |
Chen Z-Q, Fan W-T. Fluctuation limit for interacting diffusions with partial annihilations through membranes (in preparation)
|
| 15 |
Chen Z-Q, Fukushima M. Symmetric Markov Processes, Time Change and Boundary Theory. Princeton: Princeton University Press, 2012
|
| 16 |
Cox J T, Durrett R, Perkins E. Voter model perturbations and reaction diffusion equations. Astérisque, 2013, 349
|
| 17 |
Curtain R F, Zwart H. An Introduction to Infinite-dimensional Linear Systems Theory. Texts in Applied Mathematics, Vol 21. Berlin: Springer, 1995 doi: 10.1007/978-1-4612-4224-6
|
| 18 |
Dittrich P. A stochastic model of a chemical reaction with diffusion. Probab Theory Related Fields, 1988, 79: 115-128 doi: 10.1007/BF00319108
|
| 19 |
Dittrich P. A stochastic particle system: fluctuations around a nonlinear reactiondiffusion equation. Stochastic Process Appl, 1988, 30: 149-164 doi: 10.1016/0304-4149(88)90081-6
|
| 20 |
Durrett R, Levin S. Stochastic spatial models: a user’s guide to ecological applications. Philos Trans R Soc Lond Ser B, 1994, 343: 329-350
|
| 21 |
Durrett R, Levin S. The importance of being discrete (and spatial). Theoretical Population Biology, 1994, 46.3: 363-394 doi: 10.1006/tpbi.1994.1032
|
| 22 |
Erd?s L, Schlein B, Yau H T. Derivation of the cubic non-linear Schr?dinger equation from quantum dynamics of many-body systems. Invent Math, 2007, 167(3): 515-614 doi: 10.1007/s00222-006-0022-1
|
| 23 |
Evans S N, Perkins E A. Collision local times, historical stochastic calculus, and competing superprocesses. Electron J Probab, 1998, 3(5) (120pp)
|
| 24 |
Federer H. Geometric Measure Theory. Berlin: Springer, 1969
|
| 25 |
Golse F. Hydrodynamic limits. In: European Congress of Mathematics. Zürich: Eur Math Soc, 2005, 699-717
|
| 26 |
Grigorescu I, Kang M. Hydrodynamic limit for a Fleming-Viot type system. Stochastic Process Appl, 2004, 110: 111-143 doi: 10.1016/j.spa.2003.10.010
|
| 27 |
Guo M Z, Papanicolaou G C, Varadhan S R S. Nonlinear diffusion limit for a system with nearest neighbor interactions. Comm Math Phys, 1988, 118: 31-59 doi: 10.1007/BF01218476
|
| 28 |
It? K. Continuous additive S'-processes. In: Frigelionis B, ed. Stochastic Differential Systems. Berlin: Springer, 1980, 36-46
|
| 29 |
It? K. Distribution-valued processes arising from independent Brownian motions. Math Z, 1983, 182: 17-33 doi: 10.1007/BF01162590
|
| 30 |
Kipnis C, Landim C. Scaling Limits of Interacting Particle Systems. Berlin: Springer, 1998
|
| 31 |
Kotelenez P. A submartingale type inequality with applications to stochastic evolution equations. Stochastics, 1982, 8: 139-151 doi: 10.1080/17442508208833233
|
| 32 |
Kotelenez P. Law of large numbers and central limit theorem for linear chemical reactions with diffusion. Ann Probab, 1986, 14: 173-193 doi: 10.1214/aop/1176992621
|
| 33 |
Kotelenez P. High density limit theorems for nonlinear chemical reactions with diffusion. Probab Theory Related Fields, 1988, 78: 11-37 doi: 10.1007/BF00718032
|
| 34 |
Kurtz T. Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J Appl Probab, 1971, 8: 344-356 doi: 10.2307/3211904
|
| 35 |
Kurtz T. Approximation of Population Processes. Philadelphia: SIAM, 1981 doi: 10.1137/1.9781611970333
|
| 36 |
Liggett T M. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren der mathematischen Wissenschaften, Vol 324. Berlin: Springer, 1999
|
| 37 |
May R M, Nowak M A. Evolutionary games and spatial chaos. Nature, 1992, 359(6398): 826-829 doi: 10.1038/359826a0
|
| 38 |
Oelschl?ger K. A fluctuation theorem for moderately interacting diffusion processes. Probab Theory Related Fields, 1987, 74: 591-616 doi: 10.1007/BF00363518
|
| 39 |
Sznitman A S. Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated. J Funct Anal, 1984, 56: 311-336 doi: 10.1016/0022-1236(84)90080-6
|
| 40 |
Yau H T. Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett Math Phys, 1991, 22: 63-80 doi: 10.1007/BF00400379
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|