Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (4) : 717-736    https://doi.org/10.1007/s11464-014-0399-x
SURVEY ARTICLE
Scaling limits of interacting diffusions in domains
Zhen-Qing CHEN(),Wai-Tong(Louis) FAN
Department of Mathematics, University of Washington, Seattle, WA 98195, USA
 Download: PDF(220 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We survey recent effort in establishing the hydrodynamic limits and the fluctuation limits for a class of interacting diffusions in domains. These systems are introduced to model the transport of positive and negative charges in solar cells. They are general microscopic models that can be used to describe macroscopic phenomena with coupled boundary conditions, such as the population dynamics of two segregated species under competition. Proving these two types of limits represents establishing the functional law of large numbers and the functional central limit theorem, respectively, for the empirical measures of the spatial positions of the particles. We show that the hydrodynamic limit is a pair of deterministic measures whose densities solve a coupled nonlinear heat equations, while the fluctuation limit can be described by a Gaussian Markov process that solves a stochastic partial differential equation.

Keywords Hydrodynamic limit      fluctuation      interacting diffusion      reflected diffusion      Dirichlet form      non-linear boundary condition      coupled partial differential equation      martingales      stochastic partial differential equation      Guassian process     
Corresponding Author(s): Zhen-Qing CHEN   
Issue Date: 26 August 2014
 Cite this article:   
Zhen-Qing CHEN,Wai-Tong(Louis) FAN. Scaling limits of interacting diffusions in domains[J]. Front. Math. China, 2014, 9(4): 717-736.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0399-x
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I4/717
1 Bass R F, Hsu P. Some potential theory for reflecting Brownian motion in H?lder and Lipschitz domains. Ann Probab, 1991, 19: 486-508
doi: 10.1214/aop/1176990437
2 Billingsley P. Convergence of Probability Measures. 2nd ed. New York: John Wiley, 1999
doi: 10.1002/9780470316962
3 Boldrighini C, De Masi A, Pellegrinotti A. Nonequilibrium fluctuations in particle systems modelling reaction-diffusion equations. Stochastic Process Appl, 1992, 42: 1-30
doi: 10.1016/0304-4149(92)90023-J
4 Brox Th, Rost H. Equilibrium fluctuations of stochastic particle systems: the role of conserved quantities. Ann Probab, 1984, 12: 742-759
doi: 10.1214/aop/1176993225
5 Burdzy K, Chen Z-Q. Discrete approximations to reflected Brownian motion. Ann Probab, 2008, 36: 698-727
doi: 10.1214/009117907000000240
6 Burdzy K, Chen Z-Q. Reflected random walk in fractal domains. Ann Probab, 2011, 41: 2791-2819
doi: 10.1214/12-AOP745
7 Burdzy K, Holyst R, March P. A Fleming-Viot particle representation of Dirichlet Laplacian. Comm Math Phys, 2000, 214: 679-703
doi: 10.1007/s002200000294
8 Burdzy K, Quastel J. An annihilating-branching particle model for the heat equation with average temperature zero. Ann Probab, 2006, 34: 2382-2405
doi: 10.1214/009117906000000511
9 Chen M-F. From Markov Chains to Non-Equilibrium Particle Systems. 2nd ed. Singapore: World Scientific, 2003
10 Chen Z-Q. On reflecting diffusion processes and Skorokhod decompositions. Probab Theory Related Fields, 1993, 94: 281-316
doi: 10.1007/BF01199246
11 Chen Z-Q, Fan W-T. Hydrodynamic limits and propagation of chaos for interacting random walks in domains. arXiv: 1311.2325
12 Chen Z-Q, Fan W-T. Systems of interacting diffusions with partial annihilations through membranes. arXiv: 1403.5903
13 Chen Z-Q, Fan W-T. Functional central limit theorem for Brownian particles in domains with Robin boundary condition. arXiv: 1404.1442
14 Chen Z-Q, Fan W-T. Fluctuation limit for interacting diffusions with partial annihilations through membranes (in preparation)
15 Chen Z-Q, Fukushima M. Symmetric Markov Processes, Time Change and Boundary Theory. Princeton: Princeton University Press, 2012
16 Cox J T, Durrett R, Perkins E. Voter model perturbations and reaction diffusion equations. Astérisque, 2013, 349
17 Curtain R F, Zwart H. An Introduction to Infinite-dimensional Linear Systems Theory. Texts in Applied Mathematics, Vol 21. Berlin: Springer, 1995
doi: 10.1007/978-1-4612-4224-6
18 Dittrich P. A stochastic model of a chemical reaction with diffusion. Probab Theory Related Fields, 1988, 79: 115-128
doi: 10.1007/BF00319108
19 Dittrich P. A stochastic particle system: fluctuations around a nonlinear reactiondiffusion equation. Stochastic Process Appl, 1988, 30: 149-164
doi: 10.1016/0304-4149(88)90081-6
20 Durrett R, Levin S. Stochastic spatial models: a user’s guide to ecological applications. Philos Trans R Soc Lond Ser B, 1994, 343: 329-350
21 Durrett R, Levin S. The importance of being discrete (and spatial). Theoretical Population Biology, 1994, 46.3: 363-394
doi: 10.1006/tpbi.1994.1032
22 Erd?s L, Schlein B, Yau H T. Derivation of the cubic non-linear Schr?dinger equation from quantum dynamics of many-body systems. Invent Math, 2007, 167(3): 515-614
doi: 10.1007/s00222-006-0022-1
23 Evans S N, Perkins E A. Collision local times, historical stochastic calculus, and competing superprocesses. Electron J Probab, 1998, 3(5) (120pp)
24 Federer H. Geometric Measure Theory. Berlin: Springer, 1969
25 Golse F. Hydrodynamic limits. In: European Congress of Mathematics. Zürich: Eur Math Soc, 2005, 699-717
26 Grigorescu I, Kang M. Hydrodynamic limit for a Fleming-Viot type system. Stochastic Process Appl, 2004, 110: 111-143
doi: 10.1016/j.spa.2003.10.010
27 Guo M Z, Papanicolaou G C, Varadhan S R S. Nonlinear diffusion limit for a system with nearest neighbor interactions. Comm Math Phys, 1988, 118: 31-59
doi: 10.1007/BF01218476
28 It? K. Continuous additive S'-processes. In: Frigelionis B, ed. Stochastic Differential Systems. Berlin: Springer, 1980, 36-46
29 It? K. Distribution-valued processes arising from independent Brownian motions. Math Z, 1983, 182: 17-33
doi: 10.1007/BF01162590
30 Kipnis C, Landim C. Scaling Limits of Interacting Particle Systems. Berlin: Springer, 1998
31 Kotelenez P. A submartingale type inequality with applications to stochastic evolution equations. Stochastics, 1982, 8: 139-151
doi: 10.1080/17442508208833233
32 Kotelenez P. Law of large numbers and central limit theorem for linear chemical reactions with diffusion. Ann Probab, 1986, 14: 173-193
doi: 10.1214/aop/1176992621
33 Kotelenez P. High density limit theorems for nonlinear chemical reactions with diffusion. Probab Theory Related Fields, 1988, 78: 11-37
doi: 10.1007/BF00718032
34 Kurtz T. Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J Appl Probab, 1971, 8: 344-356
doi: 10.2307/3211904
35 Kurtz T. Approximation of Population Processes. Philadelphia: SIAM, 1981
doi: 10.1137/1.9781611970333
36 Liggett T M. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren der mathematischen Wissenschaften, Vol 324. Berlin: Springer, 1999
37 May R M, Nowak M A. Evolutionary games and spatial chaos. Nature, 1992, 359(6398): 826-829
doi: 10.1038/359826a0
38 Oelschl?ger K. A fluctuation theorem for moderately interacting diffusion processes. Probab Theory Related Fields, 1987, 74: 591-616
doi: 10.1007/BF00363518
39 Sznitman A S. Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated. J Funct Anal, 1984, 56: 311-336
doi: 10.1016/0022-1236(84)90080-6
40 Yau H T. Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett Math Phys, 1991, 22: 63-80
doi: 10.1007/BF00400379
[1] Shaoqin ZHANG. Shift Harnack inequality and integration by parts formula for semilinear stochastic partial differential equations[J]. Front. Math. China, 2016, 11(2): 461-496.
[2] Xin CHEN,Jian WANG. Intrinsic contractivity properties of Feynman-Kac semigroups for symmetric jump processes with infinite range jumps[J]. Front. Math. China, 2015, 10(4): 753-776.
[3] Zhi LI,Jiaowan LUO. Transportation inequalities for stochastic delay evolution equations driven by fractional Brownian motion[J]. Front. Math. China, 2015, 10(2): 303-321.
[4] Chuancun YIN,Kam C. YUEN. Exact joint laws associated with spectrally negative Lévy processes and applications to insurance risk theory[J]. Front. Math. China, 2014, 9(6): 1453-1471.
[5] Wenqi YAO,Tiao LU. Numerical comparison of three stochastic methods for nonlinear PN junction problems[J]. Front. Math. China, 2014, 9(3): 659-698.
[6] Zhonggen SU. Fluctuations of deformed Wigner random matrices[J]. Front Math Chin, 2013, 8(3): 609-641.
[7] Rafail V. ABRAMOV. Improved linear response for stochastically driven systems[J]. Front Math Chin, 2012, 7(2): 199-216.
[8] Jinqiao DUAN. Stochastic modeling of unresolved scales in complex systems[J]. Front Math Chin, 2009, 4(3): 425-436.
[9] Yonghua MAO, Lianghui XIA. Spectral gap for jump processes by decomposition method[J]. Front Math Chin, 2009, 4(2): 335-347.
[10] BO Lijun, WANG Yongjin, YAN Liqing. Higher-order stochastic partial differential equations with branching noises[J]. Front. Math. China, 2008, 3(1): 15-35.
[11] LAN Guangqiang, WANG Fengyu. (Quasi-)Regular Dirichlet forms for particle systems on Polish spaces[J]. Front. Math. China, 2007, 2(4): 583-598.
[12] LI Zeng-hu. Branching Processes with Immigration and Related Topics[J]. Front. Math. China, 2006, 1(1): 73-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed