Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (4) : 753-759    https://doi.org/10.1007/s11464-014-0400-8
RESEARCH ARTICLE
Limiting process of absorbing Markov chains
Jinwen CHEN()
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
 Download: PDF(105 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We outline an approach to investigate the limiting law of an absorbing Markov chain conditional on having not been absorbed for long time. The main idea is to employ Donsker-Varadhan’s entropy functional which is typically used as the large deviation rate function for Markov processes. This approach provides an interpretation for a certain quasi-ergodicity

Keywords Absorbing Markov chain      large deviation      principal eigenvalue      quasi-stationary distribution      decay parameter     
Corresponding Author(s): Jinwen CHEN   
Issue Date: 26 August 2014
 Cite this article:   
Jinwen CHEN. Limiting process of absorbing Markov chains[J]. Front. Math. China, 2014, 9(4): 753-759.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0400-8
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I4/753
1 Anderson W J. Continuous-Time Markov Chains. An Applications-Oriented Approach. Berlin: Springer-Verlag, 1991
doi: 10.1007/978-1-4612-3038-0
2 Bolthausen E, Schmock U. On the maximum entropy principle for uniformly ergodic Markov chains. Stochastic Process Appl, 1989, 33(1): 1-27
doi: 10.1016/0304-4149(89)90063-X
3 Chen J W, Deng X X. Large deviations and related problems for absorbing Markov chains. Stochastic Process Appl, 2013, 123: 2398-2418
doi: 10.1016/j.spa.2013.02.014
4 Donsker M D, Varadhan S R S. Asymptotic evaluation of certain Markov process expectations for large time. (I). Comm Pure Appl Math, 1975, 28: 1-47
doi: 10.1002/cpa.3160280102
5 Donsker M D, Varadhan S R S. Asymptotic evaluation of certain Markov process expectations for large time. (II). Comm Pure Appl Math, 1975, 28: 279-301
doi: 10.1002/cpa.3160280206
6 Donsker M D, Varadhan S R S. Asymptotic evaluation of certain Markov process expectations for large time. (III). Comm Pure Appl Math, 1976, 29: 389-461
doi: 10.1002/cpa.3160290405
7 Donsker M D, Varadhan S R S. Asymptotic evaluation of certain Markov process expectations for large time. (IV). Comm Pure Appl Math, 1983, 36: 183-212
doi: 10.1002/cpa.3160360204
8 Flaspohler D C. Quasi-stationary distributions for absorbing continuous-time denumerable Markov chains. Ann Inst Statist Math, 1973, 26: 351-356
doi: 10.1007/BF02479830
9 Kingman J F C. The exponential decay of Markov transition probabilities. Proc Lond Math Soc (3), 1963, XIII: 337-358
[1] Linlin FU, Jiahao XU, Fan WU. New proof of continuity of Lyapunov exponents for a class of smooth Schrödinger cocycles with weak Liouville frequencies[J]. Front. Math. China, 2020, 15(3): 467-489.
[2] Qi SUN, Mei ZHANG. Harmonic moments and large deviations for supercritical branching processes with immigration[J]. Front. Math. China, 2017, 12(5): 1201-1220.
[3] Xinmei SHEN, Yuqing NIU, Hailan TIAN. Precise large deviations for sums of random vectors with dependent components of consistently varying tails[J]. Front. Math. China, 2017, 12(3): 711-732.
[4] Hanjun ZHANG,Guoman HE. Domain of attraction of quasi-stationary distribution for one-dimensional diffusions[J]. Front. Math. China, 2016, 11(2): 411-421.
[5] Hui JIANG. Large and moderate deviations in testing Ornstein-Uhlenbeck process with linear drift[J]. Front. Math. China, 2016, 11(2): 291-307.
[6] Xiaocui MA,Fubao XI. Large deviations for empirical measures of switching diffusion processes with small parameters[J]. Front. Math. China, 2015, 10(4): 949-963.
[7] Junping LI,Xiangxiang HUANG,Juan WANG,Lina ZHANG. Recurrence and decay properties of a star-typed queueing model with refusal[J]. Front. Math. China, 2015, 10(4): 917-932.
[8] Yingqiu LI,Quansheng LIU,Zhiqiang GAO,Hesong WANG. Asymptotic properties of supercritical branching processes in random environments[J]. Front. Math. China, 2014, 9(4): 737-751.
[9] Lina ZHANG,Junping LI. Decay properties of Markovian bulk-arrival and bulk-service queues with state-independent control[J]. Front. Math. China, 2014, 9(4): 983-1000.
[10] Chunmao HUANG,Xingang LIANG,Quansheng LIU. Branching random walks with random environments in time[J]. Front. Math. China, 2014, 9(4): 835-842.
[11] Yu CHEN, Weiping ZHANG, Chun SU. Precise large deviations for generalized dependent compound renewal risk model with consistent variation[J]. Front Math Chin, 2014, 9(1): 31-44.
[12] Lei CHEN, Fuqing GAO, Shaochen WANG. Moderate deviations and central limit theorem for small perturbation Wishart processes[J]. Front Math Chin, 2014, 9(1): 1-15.
[13] Guangqiang LAN. Large deviation principle of stochastic differential equations with non-Lipschitzian coefficients[J]. Front Math Chin, 2013, 8(6): 1307-1321.
[14] Kaiyong WANG, Yang YANG, Jinguan LIN. Precise large deviations for widely orthant dependent random variables with dominatedly varying tails[J]. Front Math Chin, 2012, 7(5): 919-932.
[15] Mu-Fa CHEN. Lower bounds of principal eigenvalue in dimension one[J]. Front Math Chin, 2012, 7(4): 645-668.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed