Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2013, Vol. 8 Issue (6) : 1307-1321    https://doi.org/10.1007/s11464-013-0318-6
RESEARCH ARTICLE
Large deviation principle of stochastic differential equations with non-Lipschitzian coefficients
Guangqiang LAN()
School of Science, Beijing University of Chemical Technology, Beijing 100029, China
 Download: PDF(131 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the large deviation principle of stochastic differential equations with non-Lipschitzian and non-homogeneous coefficients. We consider at first the large deviation principle when the coefficients σ and b are bounded, then we generalize the conclusion to unbounded case by using bounded approximation program. Our results are generalization of S. Fang-T. Zhang’s results.

Keywords Stochastic differential equation      non-Lipschitzian      large deviation principle     
Corresponding Author(s): LAN Guangqiang,Email:langq@mail.buct.edu.cn   
Issue Date: 01 December 2013
 Cite this article:   
Guangqiang LAN. Large deviation principle of stochastic differential equations with non-Lipschitzian coefficients[J]. Front Math Chin, 2013, 8(6): 1307-1321.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0318-6
https://academic.hep.com.cn/fmc/EN/Y2013/V8/I6/1307
1 Dembo A, Zeitouni A. Large Deviations Techniques and Applications. Berlin: Springer-Verlag, 1998
doi: 10.1007/978-1-4612-5320-4
2 Deuschel J D, Stroock D W. Large Deviations. Boston: Academic Press, 1989
3 Fang S Z, Zhang T S. Large deviations for the Brownian motion on loop groups. J Theoret Probab , 2001, 14(2): 463-483
doi: 10.1023/A:1011115831136
4 Fang S Z, Zhang T S. A study of a class of stochastic differential equations with non-Lipschizian coefficients. Probab Theory Related Fields , 2005, 132(3): 356-390
doi: 10.1007/s00440-004-0398-z
5 Lan G Q. Pathwise uniqueness and non-explosion of stochastic differential equations with non-Lipschitzian coefficients. Acta Math Sinica , 2009, 52(4): 109-114 (in Chinese)
6 Orey S, Pelikan S. Large deviation principles for stationary processes. Ann Probab , 1988, 16(4): 1481-1495
doi: 10.1214/aop/1176991579
7 Stroock D W. An Introduction to the Theory of Large Deviations. Berlin: Springer-Verlag, 1984
doi: 10.1007/978-1-4613-8514-1
8 Varadhan S R S. Large deviations. Lecture Notes in Control and Information Sciences , 1982, 42: 382-392
doi: 10.1007/BFb0004554
9 Varadhan S R S. Large Deviations and Entropy. Princeton: Princeton University Press , 2003
10 Zhang T S. A large deviation principle of diffusions on configuration spaces. Stochastic Process Appl , 2001, 91: 239-254
doi: 10.1016/S0304-4149(00)00062-4
[1] Qingfeng ZHU, Lijiao SU, Fuguo LIU, Yufeng SHI, Yong’ao SHEN, Shuyang WANG. Mean-field type forward-backward doubly stochastic differential equations and related stochastic differential games[J]. Front. Math. China, 2020, 15(6): 1307-1326.
[2] Panpan REN, Fen-Fen YANG. Path independence of additive functionals for stochastic differential equations under G-framework[J]. Front. Math. China, 2019, 14(1): 135-148.
[3] Yulin SONG. Density functions of doubly-perturbed stochastic differential equations with jumps[J]. Front. Math. China, 2018, 13(1): 161-172.
[4] Peng LUO. Reflected stochastic differential equations driven by G-Brownian motion with nonlinear resistance[J]. Front. Math. China, 2016, 11(1): 123-140.
[5] Wei ZHANG,Weidong ZHAO. Euler-type schemes for weakly coupled forward-backward stochastic differential equations and optimal convergence analysis[J]. Front. Math. China, 2015, 10(2): 415-434.
[6] Junjun LIAO,Xiangjun WANG. Stability of stochastic differential equation with linear fractal noise[J]. Front. Math. China, 2014, 9(3): 495-507.
[7] Miao WANG,Jiang-Lun WU. Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations[J]. Front. Math. China, 2014, 9(3): 601-622.
[8] Shengjun FAN, Long JIANG, Matt DAVISON. Existence and uniqueness result for multidimensional BSDEs with generators of Osgood type[J]. Front Math Chin, 2013, 8(4): 811-824.
[9] Di LIU. Strong convergence rate of principle of averaging for jump-diffusion processes[J]. Front Math Chin, 2012, 7(2): 305-320.
[10] Zongxia LIANG, Bin SUN. Optimal control of a big financial company with debt liability under bankrupt probability constraints[J]. Front Math Chin, 2011, 6(6): 1095-1130.
[11] Dejun LUO. Pathwise uniqueness of multi-dimensional stochastic differential equations with H?lder diffusion coefficients[J]. Front Math Chin, 2011, 6(1): 129-136.
[12] Jonathan BENNETT, Jiang-Lun WU, . Stochastic control of SDEs associated with Lévy generators and application to financial optimization[J]. Front. Math. China, 2010, 5(1): 89-102.
[13] Jonathan Bennett, Jiang-Lun Wu. Stochastic differential equations with polar-decomposed L関y measures and applications to stochastic optimization[J]. Front. Math. China, 2007, 2(4): 539-558.
[14] BO Lijun, YAO Ruiming. Strong comparison result for a class of re-ected stochastic differential equations with non-Lipschitzian coeffcients[J]. Front. Math. China, 2007, 2(1): 73-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed