Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (2) : 305-320    https://doi.org/10.1007/s11464-012-0193-6
RESEARCH ARTICLE
Strong convergence rate of principle of averaging for jump-diffusion processes
Di LIU()
Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
 Download: PDF(184 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study jump-diffusion processes with two well-separated time scales. It is proved that the rate of strong convergence to the averaged effective dynamics is of order O(?1/2), where ??1 is the parameter measuring the disparity of the time scales in the system. The convergence rate is shown to be optimal through examples. The result sheds light on the designing of efficient numerical methods for multiscale stochastic dynamics.

Keywords Stochastic differential equation      time scale separation      averaging of perturbations     
Corresponding Author(s): LIU Di,Email:richardl@math.msu.edu   
Issue Date: 01 April 2012
 Cite this article:   
Di LIU. Strong convergence rate of principle of averaging for jump-diffusion processes[J]. Front Math Chin, 2012, 7(2): 305-320.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0193-6
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I2/305
1 E W, Engquist B. The heterogeneous multiscale methods. Commun Math Sci , 2003, 1(1): 87-133
2 E W, Liu D, Vanden-Eijnden E. Analysis of multiscale methods for stochastic differential equations. Commun Pure Appl Math , 2005, 58(11): 1544-1585
doi: 10.1002/cpa.20088
3 Freidlin M I, Wentzell A D. Random Perturbations of Dynamical Systems. 2nd ed. New York: Springer-Verlag, 1998
doi: 10.1007/978-1-4612-0611-8
4 Givon D. Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems. SIAM Mul Mod Simu , 2007, 6: 577-594
doi: 10.1137/060673345
5 Givon D, Kevrekidis I G, Kupferman R. Strong convergence of projective integration schemes for singularly perturbed stochastic differential systems. Commun Math Sci , 2006, 4(4): 707-729
6 Khasminskii R Z. Principle of averaging for parabolic and elliptic differential equations and for Markov processes with small diffusion. Theory Probab Appl , 1963, 8: 1-21
doi: 10.1137/1108001
7 Khasminskii R Z. Stochastic Stability of Differential Equations. Alphen aan den Rijn: Sijthoff & Noordhoff, 1980
8 Khasminskii R Z, Yin G. On averaging principles: An asymptotic expansion approach. SIAM J Math Anal , 2004, 35(6): 1534-1560 , 2004
9 Kifer Y. Stochastic versions of Anosov and Neistadt theorems on averaging. Stoch Dyn , 2001, 1(1): 1-21
doi: 10.1142/S0219493701000023
10 Kushner H J. Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems, 3, Systems & Control: Foundations & Applications. Boston: Birkh?user, 1990
11 Liu D. Strong convergence of principle of averaging for multiscale stochastic dynamical systems. Commun Math Sci , 2010, 8: 999-1020
12 Liu D. Analysis of multiscale methods for stochastic dynamical systems with multiple time scales. SIAM Mul Mod Simu , 2010, 8: 944-964
doi: 10.1137/090750664
13 Menaldi J L, Robin M. Invariant measure for diffusions with jumps. Appl Math Optim , 1999, 40: 105-140
doi: 10.1007/s002459900118
14 Meyn S P, Tweedie R L. Stability of Markovian processes, I. Adv Appl Probab , 1992, 24(3): 542-574
doi: 10.2307/1427479
15 Meyn S P, Tweedie R L. Stability of Markovian processes, II. Adv Appl Probab , 1993, 25(3): 487-517
doi: 10.2307/1427521
16 Meyn S P, Tweedie R L. Stability of Markovian processes, III. Adv Appl Probab , 1993, 25(3): 518-548
doi: 10.2307/1427522
17 Vanden-Eijnden E. Numerical techniques for multi-scale dynamical systems with stochastic effects. Commun Math Sci , 2003, 1: 377-384
18 Veretennikov A Yu. On an averaging principle for systems of stochastic differential equations. Math Sbornik , 1990, 181(2): 256-268
[1] Qingfeng ZHU, Lijiao SU, Fuguo LIU, Yufeng SHI, Yong’ao SHEN, Shuyang WANG. Mean-field type forward-backward doubly stochastic differential equations and related stochastic differential games[J]. Front. Math. China, 2020, 15(6): 1307-1326.
[2] Panpan REN, Fen-Fen YANG. Path independence of additive functionals for stochastic differential equations under G-framework[J]. Front. Math. China, 2019, 14(1): 135-148.
[3] Yulin SONG. Density functions of doubly-perturbed stochastic differential equations with jumps[J]. Front. Math. China, 2018, 13(1): 161-172.
[4] Peng LUO. Reflected stochastic differential equations driven by G-Brownian motion with nonlinear resistance[J]. Front. Math. China, 2016, 11(1): 123-140.
[5] Wei ZHANG,Weidong ZHAO. Euler-type schemes for weakly coupled forward-backward stochastic differential equations and optimal convergence analysis[J]. Front. Math. China, 2015, 10(2): 415-434.
[6] Junjun LIAO,Xiangjun WANG. Stability of stochastic differential equation with linear fractal noise[J]. Front. Math. China, 2014, 9(3): 495-507.
[7] Miao WANG,Jiang-Lun WU. Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations[J]. Front. Math. China, 2014, 9(3): 601-622.
[8] Guangqiang LAN. Large deviation principle of stochastic differential equations with non-Lipschitzian coefficients[J]. Front Math Chin, 2013, 8(6): 1307-1321.
[9] Shengjun FAN, Long JIANG, Matt DAVISON. Existence and uniqueness result for multidimensional BSDEs with generators of Osgood type[J]. Front Math Chin, 2013, 8(4): 811-824.
[10] Zongxia LIANG, Bin SUN. Optimal control of a big financial company with debt liability under bankrupt probability constraints[J]. Front Math Chin, 2011, 6(6): 1095-1130.
[11] Dejun LUO. Pathwise uniqueness of multi-dimensional stochastic differential equations with H?lder diffusion coefficients[J]. Front Math Chin, 2011, 6(1): 129-136.
[12] Jonathan BENNETT, Jiang-Lun WU, . Stochastic control of SDEs associated with Lévy generators and application to financial optimization[J]. Front. Math. China, 2010, 5(1): 89-102.
[13] Jonathan Bennett, Jiang-Lun Wu. Stochastic differential equations with polar-decomposed L関y measures and applications to stochastic optimization[J]. Front. Math. China, 2007, 2(4): 539-558.
[14] BO Lijun, YAO Ruiming. Strong comparison result for a class of re-ected stochastic differential equations with non-Lipschitzian coeffcients[J]. Front. Math. China, 2007, 2(1): 73-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed