|
|
|
Stochastic control of SDEs associated with Lévy
generators and application to financial optimization |
| Jonathan BENNETT,Jiang-Lun WU, |
| Department of Mathematics,
Swansea University, Singleton Park, Swansea SA2 8PP, UK; |
|
|
|
|
Abstract This paper is concerned with the optimal control of jump type stochastic differential equations associated with (general) Lévy generators. The maximum principle is formulated for the solutions of the equations, which is inspired by N. C. Framstad, B. Øsendal and A. Sulem [J. Optim. Theory Appl., 2004, 121: 77―98] (and a continuation, J. Bennett and J. -L. Wu [Front. Math. China, 2007, 2(4): 539―558]). The result is then applied to optimization problems in financial models driven by Lévy-type processes.
|
| Keywords
Lévy generators
jump type stochastic differential equation
optimal control
maximum principle
portfolio optimization
|
|
Issue Date: 05 March 2010
|
|
|
Albeverio S, B. Rüdiger B, Wu J-L. Invariant measures and symmetry propertyof Lévy type operators. PotentialAnal, 2000, 13: 147―168
doi: 10.1023/A:1008705820024
|
|
Applebaum D. LévyProcesses and Stochastic Calculus. Cambridge: Cambridge Univ Press, 2004
|
|
Barndorff-Nielsen O E, Mikosch T, Resnick S I, eds. Lévy Processes. Theory and Applications. Boston: Birkhäuser, Inc, 2001
|
|
Bass R F. Uniqueness in law for pure jump type Mark processes. Probab Th Rel Fields, 1988, 79: 271―287
doi: 10.1007/BF00320922
|
|
Bennett J, Wu J-L. Stochastic differential equationswith polar-decomposed Lévy measures and applications to stochasticoptimization. Front Math China, 2007, 2(4): 539―558
doi: 10.1007/s11464-007-0033-2
|
|
Bennett J, Wu J-L. An optimal stochastic controlproblem for SDEs driven by a general Lévy-type process. Stoch Anal Appl, 2008, 26(3): 471―494
doi: 10.1080/07362990802007004
|
|
Bertoin J. LévyProcesses. Cambridge: Cambridge Univ Press, 1996
|
|
Crandall M G, Ishii H, Lions P-L. User’s guide to viscosity solutions of secondorder partial differential equations. BullAmer Math Soc (NS), 1992, 27(1): 1―67
|
|
El Karoui N, Lepeltier J-P. Représentation des processusponctuels multivariés à l’aide d’un processusde Poisson. Z Wahr verw Geb, 1977, 39: 111―133
|
|
Ethier S N, Kurtz T G. Markov Processes: Characterizationand Convergence. New York: John Wiley and Sons, 1986
|
|
Framstad N C, Øsendal B, Sulem A. Sufficient stochastic maximum principle for the optimalcontrol of jump diffusions and applications to finance. J Optim Theory Appl, 2004, 121: 77―98; Errata corrige, J Optim Theory Appl, 2005, 124: 511―512
doi: 10.1007/s10957-004-0949-6
|
|
Ikeda N, Watanabe S. Stochastic Differential Equationsand Diffusion Processes. Kodansha: North-Holland, 1981
|
|
Ishikawa Y. Optimalcontrol problem associated with jump processes. Appl Math Optim, 2004, 50: 21―65
doi: 10.1007/s00245-004-0795-9
|
|
Jacob N. Pseudo-DifferentialOperators and Markov Processes. Vol I—FourierAnalysis and Semigroups. London: Imperial College Press, 2001
|
|
Jacob N. Pseudo-DifferentialOperators and Markov Processes. Vol II—Generatorsand Their Potential Theory. London: Imperial College Press, 2002
|
|
Jacob N. Pseudo-DifferentialOperators and Markov Processes. Vol III—MarkovProcesses and Applications. London: Imperial College Press, 2005
|
|
Jakobsen E R, Karlsen K H. Continuous dependence estimatesfor viscosity solutions of integro-PDEs. J Differential Equations, 2005, 212(2): 278―318
doi: 10.1016/j.jde.2004.06.021
|
|
Jakobsen E R, Karlsen K H. A “maximum principlefor semicontinuous functions” applicable to integro-partialdifferential equations. NoDEA NonlinearDifferential Equations Appl, 2006, 13(2): 137―165
doi: 10.1007/s00030-005-0031-6
|
|
Kabanov Y M. On the Pontryagin maximum principle for SDEs with a Poisson-typedriving noise. In: Rozovskii B L, Kabanov Y M, Shiryaev A N, eds. Statistics andControl of Stochastic Processes. River Edge: World Scientific, 1997, 173―190
|
|
Kohlmann M. Optimalityconditions in optimal control of jump processes-extended abstract. In: Proceedings in Operations Research, Physica,Würzburg, Germany, Vol 7. 1978, 48―57
|
|
Kolokoltsov V. Symmetricstable laws and stable-like jump-diffusions. Proc London Math Soc, 2000, 80: 725―768
doi: 10.1112/S0024611500012314
|
|
Komatsu T. Markovprocesses associated with certain integro-differential operators. Osaka J Math, 1973, 10: 271―303
|
|
Komatsu T. Onthe martingale problem for generators of stable processes with perturbations. Osaka J Math, 1984, 21: 113―132
|
|
Li J, Peng S. Stochastic optimization theoryof backward stochastic differential equations with jumps and viscositysolutions of Hamilton-Jacobi-Bellman equations. Nonlinear Anal, 2009, 70(4): 1776―1796
doi: 10.1016/j.na.2008.02.080
|
|
Negoro A, Tsuchiya M, Stochastic processes andsemigroups associated with degenerate Lévy generating operators. Stochastics Stochastics Rep, 1989, 26: 29―61
|
|
Øsendal B, Sulem A. Applied Stochastic Controlof Jump Diffusions. Universitext. Berlin: Springer-Verlag, 2005
|
|
Samorodnitsky G, Taqqu M. Stable non-Gaussian RandomProcesses. Stochastic Models with InfiniteVariance. New York: Chapman and Hall, 1994
|
|
Sato K. LévyProcesses and Infinitely Divisible Distributions. Cambridge: Cambridge Univ Press, 1999
|
|
Stroock D W. Diffusion processes associated with Lévy generators. Z Wahr verw Geb, 1975, 32: 209―244
|
|
Stroock D W. Markov Processes from K. Itô’s Perspective. Ann Math Stud, Vol 155. Princeton: Princeton Univ Press, 2003
|
|
Tang S, Li X. Necessary conditions foroptimal control of stochastic systems with random jumps, SIAM Journal on Control and Optimization, 1994, 32: 1447―1475
doi: 10.1137/S0363012992233858
|
|
Tsuchiya M. Lévymeasure with generalized polar decomposition and the associated SDEwith jumps. Stochastics Stochastics Rep, 1992, 38: 95―117
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|