Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2010, Vol. 5 Issue (1) : 89-102    https://doi.org/10.1007/s11464-009-0052-2
Research articles
Stochastic control of SDEs associated with Lévy generators and application to financial optimization
Jonathan BENNETT,Jiang-Lun WU,
Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP, UK;
 Download: PDF(182 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This paper is concerned with the optimal control of jump type stochastic differential equations associated with (general) Lévy generators. The maximum principle is formulated for the solutions of the equations, which is inspired by N. C. Framstad, B. Øsendal and A. Sulem [J. Optim. Theory Appl., 2004, 121: 77―98] (and a continuation, J. Bennett and J. -L. Wu [Front. Math. China, 2007, 2(4): 539―558]). The result is then applied to optimization problems in financial models driven by Lévy-type processes.
Keywords Lévy generators      jump type stochastic differential equation      optimal control      maximum principle      portfolio optimization      
Issue Date: 05 March 2010
 Cite this article:   
Jonathan BENNETT,Jiang-Lun WU. Stochastic control of SDEs associated with Lévy generators and application to financial optimization[J]. Front. Math. China, 2010, 5(1): 89-102.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0052-2
https://academic.hep.com.cn/fmc/EN/Y2010/V5/I1/89
Albeverio S, B. Rüdiger B, Wu J-L. Invariant measures and symmetry propertyof Lévy type operators. PotentialAnal, 2000, 13: 147―168

doi: 10.1023/A:1008705820024
Applebaum D. LévyProcesses and Stochastic Calculus. Cambridge: Cambridge Univ Press, 2004
Barndorff-Nielsen O E, Mikosch T, Resnick S I, eds. Lévy Processes. Theory and Applications. Boston: Birkhäuser, Inc, 2001
Bass R F. Uniqueness in law for pure jump type Mark processes. Probab Th Rel Fields, 1988, 79: 271―287

doi: 10.1007/BF00320922
Bennett J, Wu J-L. Stochastic differential equationswith polar-decomposed Lévy measures and applications to stochasticoptimization. Front Math China, 2007, 2(4): 539―558

doi: 10.1007/s11464-007-0033-2
Bennett J, Wu J-L. An optimal stochastic controlproblem for SDEs driven by a general Lévy-type process. Stoch Anal Appl, 2008, 26(3): 471―494

doi: 10.1080/07362990802007004
Bertoin J. LévyProcesses. Cambridge: Cambridge Univ Press, 1996
Crandall M G, Ishii H, Lions P-L. User’s guide to viscosity solutions of secondorder partial differential equations. BullAmer Math Soc (NS), 1992, 27(1): 1―67
El Karoui N, Lepeltier J-P. Représentation des processusponctuels multivariés à l’aide d’un processusde Poisson. Z Wahr verw Geb, 1977, 39: 111―133
Ethier S N, Kurtz T G. Markov Processes: Characterizationand Convergence. New York: John Wiley and Sons, 1986
Framstad N C, Øsendal B, Sulem A. Sufficient stochastic maximum principle for the optimalcontrol of jump diffusions and applications to finance. J Optim Theory Appl, 2004, 121: 77―98; Errata corrige, J Optim Theory Appl, 2005, 124: 511―512

doi: 10.1007/s10957-004-0949-6
Ikeda N, Watanabe S. Stochastic Differential Equationsand Diffusion Processes. Kodansha: North-Holland, 1981
Ishikawa Y. Optimalcontrol problem associated with jump processes. Appl Math Optim, 2004, 50: 21―65

doi: 10.1007/s00245-004-0795-9
Jacob N. Pseudo-DifferentialOperators and Markov Processes. Vol I—FourierAnalysis and Semigroups. London: Imperial College Press, 2001
Jacob N. Pseudo-DifferentialOperators and Markov Processes. Vol II—Generatorsand Their Potential Theory. London: Imperial College Press, 2002
Jacob N. Pseudo-DifferentialOperators and Markov Processes. Vol III—MarkovProcesses and Applications. London: Imperial College Press, 2005
Jakobsen E R, Karlsen K H. Continuous dependence estimatesfor viscosity solutions of integro-PDEs. J Differential Equations, 2005, 212(2): 278―318

doi: 10.1016/j.jde.2004.06.021
Jakobsen E R, Karlsen K H. A “maximum principlefor semicontinuous functions” applicable to integro-partialdifferential equations. NoDEA NonlinearDifferential Equations Appl, 2006, 13(2): 137―165

doi: 10.1007/s00030-005-0031-6
Kabanov Y M. On the Pontryagin maximum principle for SDEs with a Poisson-typedriving noise. In: Rozovskii B L, Kabanov Y M, Shiryaev A N, eds. Statistics andControl of Stochastic Processes. River Edge: World Scientific, 1997, 173―190
Kohlmann M. Optimalityconditions in optimal control of jump processes-extended abstract. In: Proceedings in Operations Research, Physica,Würzburg, Germany, Vol 7. 1978, 48―57
Kolokoltsov V. Symmetricstable laws and stable-like jump-diffusions. Proc London Math Soc, 2000, 80: 725―768

doi: 10.1112/S0024611500012314
Komatsu T. Markovprocesses associated with certain integro-differential operators. Osaka J Math, 1973, 10: 271―303
Komatsu T. Onthe martingale problem for generators of stable processes with perturbations. Osaka J Math, 1984, 21: 113―132
Li J, Peng S. Stochastic optimization theoryof backward stochastic differential equations with jumps and viscositysolutions of Hamilton-Jacobi-Bellman equations. Nonlinear Anal, 2009, 70(4): 1776―1796

doi: 10.1016/j.na.2008.02.080
Negoro A, Tsuchiya M, Stochastic processes andsemigroups associated with degenerate Lévy generating operators. Stochastics Stochastics Rep, 1989, 26: 29―61
Øsendal B, Sulem A. Applied Stochastic Controlof Jump Diffusions. Universitext. Berlin: Springer-Verlag, 2005
Samorodnitsky G, Taqqu M. Stable non-Gaussian RandomProcesses. Stochastic Models with InfiniteVariance. New York: Chapman and Hall, 1994
Sato K. LévyProcesses and Infinitely Divisible Distributions. Cambridge: Cambridge Univ Press, 1999
Stroock D W. Diffusion processes associated with Lévy generators. Z Wahr verw Geb, 1975, 32: 209―244
Stroock D W. Markov Processes from K. Itô’s Perspective. Ann Math Stud, Vol 155. Princeton: Princeton Univ Press, 2003
Tang S, Li X. Necessary conditions foroptimal control of stochastic systems with random jumps, SIAM Journal on Control and Optimization, 1994, 32: 1447―1475

doi: 10.1137/S0363012992233858
Tsuchiya M. Lévymeasure with generalized polar decomposition and the associated SDEwith jumps. Stochastics Stochastics Rep, 1992, 38: 95―117
[1] Hongfei FU,Hongxing RUI,Zhaojie ZHOU. A posteriori error estimates for optimal control problems constrained by convection-diffusion equations[J]. Front. Math. China, 2016, 11(1): 55-75.
[2] Yuelong TANG, Yanping CHEN. Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems[J]. Front Math Chin, 2013, 8(2): 443-464.
[3] Yannan LIU. Evolution of hypersurfaces by powers of mean curvature minus an external force field[J]. Front Math Chin, 2012, 7(4): 717-723.
[4] Yanping CHEN, Zuliang LU, Ruyi GUO. Error estimates of triangular mixed finite element methods for quasilinear optimal control problems[J]. Front Math Chin, 2012, 7(3): 397-413.
[5] Zongxia LIANG, Bin SUN. Optimal control of a big financial company with debt liability under bankrupt probability constraints[J]. Front Math Chin, 2011, 6(6): 1095-1130.
[6] Yannan LIU, . Evolution of noncompact hypersurfaces by mean curvature minus a kind of external force field[J]. Front. Math. China, 2010, 5(2): 311-317.
[7] YAN Ningning, ZHOU Zhaojie. A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations[J]. Front. Math. China, 2008, 3(3): 415-442.
[8] Jonathan Bennett, Jiang-Lun Wu. Stochastic differential equations with polar-decomposed L関y measures and applications to stochastic optimization[J]. Front. Math. China, 2007, 2(4): 539-558.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed