Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (1) : 55-75    https://doi.org/10.1007/s11464-015-0456-0
RESEARCH ARTICLE
A posteriori error estimates for optimal control problems constrained by convection-diffusion equations
Hongfei FU1,*(),Hongxing RUI2,Zhaojie ZHOU3
1. College of Science, China University of Petroleum, Qingdao 266580, China
2. School of Mathematics, Shandong University, Jinan 250100, China
3. School of Mathematical Sciences, Shandong Normal University, Jinan 250014, China
 Download: PDF(1245 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose a characteristic finite element discretization of evolutionary type convection-diffusion optimal control problems. Nondivergence-free velocity fields and bilateral inequality control constraints are handled. Then some residual type a posteriori error estimates are analyzed for the approximations of the control, the state, and the adjoint state. Based on the derived error estimators, we use them as error indicators in developing efficient multi-set adaptive meshes characteristic finite element algorithm for such optimal control problems. Finally, one numerical example is given to check the feasibility and validity of multi-set adaptive meshes refinements.

Keywords Optimal control problem      characteristic finite element      convectiondiffusion equation      multi-set adaptive meshes      a posterior error estimate     
Corresponding Author(s): Hongfei FU   
Issue Date: 02 December 2015
 Cite this article:   
Hongfei FU,Hongxing RUI,Zhaojie ZHOU. A posteriori error estimates for optimal control problems constrained by convection-diffusion equations[J]. Front. Math. China, 2016, 11(1): 55-75.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0456-0
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I1/55
1 Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. New York: Wiley-Interscience, 2000
https://doi.org/10.1002/9781118032824
2 Bangerth W, Rannacher R. Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics, ETH Zurich. Basel: Birkhăuser, 2003
https://doi.org/10.1007/978-3-0348-7605-6
3 Becker R, Kapp H, Rannacher R. Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J Control Optim, 2000, 39: 113–132
https://doi.org/10.1137/S0363012999351097
4 Chang Y Z, Yang D P, Zhang Z J. Adaptive finite element approximation for a class of parameter estimation problems. Appl Math Comput, 2014, 231: 284–298
https://doi.org/10.1016/j.amc.2013.12.141
5 Ciarlet P G. The Finite Element Method for Elliptic Problems. Philadelphia: SIAM, 2002
https://doi.org/10.1137/1.9780898719208
6 Douglas J, Russell T F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J Numer Anal, 1982, 19: 871–885DissertationTip
7 Ewing R E, Russell T F, Wheeler M F. Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput Methods Appl Mech Engrg, 1984, 47: 73–92
https://doi.org/10.1016/0045-7825(84)90048-3
8 Fu H F. A characteristic finite element method for optimal control problems governed by convection-diffusion equations. J Comput Appl Math, 2010, 235: 825–836
https://doi.org/10.1016/j.cam.2010.07.010
9 Fu H F, Rui H X. A priori error estimates for optimal control problems governed by transient advection-diffusion equations. J Sci Comput, 2009, 38: 290–315
https://doi.org/10.1007/s10915-008-9224-6
10 Fu H F, Rui H X. A priori and a posteriori error estimates for the method of lumped masses for parabolic optimal control problems. Int J Comput Math, 2011, 88: 2798–2823
https://doi.org/10.1080/00207160.2011.558575
11 Fu H F, Rui H X. Adaptive characteristic finite element approximation of convectiondiffusion optimal control problems. Numer Methods Partial Differential Equations, 2013, 29: 978–998
https://doi.org/10.1002/num.21741
12 Ge L, Liu W B, Yang D P. Adaptive finite element approximation for a constrained optimal control problem via multi-meshes. J Sci Comput, 2009, 41: 238–255
https://doi.org/10.1007/s10915-009-9296-y
13 Houston P, Süli E. Adaptive Lagrange-Galerkin methods for unsteady convectiondiffusion problems. Math Comput, 2001, 70: 77–106
https://doi.org/10.1090/S0025-5718-00-01187-X
14 Kufner A, John O, Fucik S. Function Spaces. Leyden: Noordhoff, 1977
15 Li R. On multi-mesh h-adaptive meshes. J Sci Comput, 2005, 24: 321–341
https://doi.org/10.1007/s10915-004-4793-5
16 Li R, Liu W B, Ma H P, Tang T. Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J Control Optim, 2002, 41: 1321–1349
https://doi.org/10.1137/S0363012901389342
17 Lions J L. Optimal Control of Systems Governed by Partial Differential Equations. Berlin: Springer-Verlag, 1971
https://doi.org/10.1007/978-3-642-65024-6
18 Liu W B, Yan N N. A posteriori error estimates for optimal boundary control. SIAM J Numer Anal, 2001, 39: 73–99
https://doi.org/10.1137/S0036142999352187
19 Liu W B, Yan N N. A posteriori error estimates for distributed convex optimal control problems. Adv Comput Math, 2001, 15: 285–309
https://doi.org/10.1023/A:1014239012739
20 Liu W B, Yan N N. A posteriori error estimates for control problems governed by nonlinear elliptic equations. Appl Numer Math, 2003, 47: 173–187
https://doi.org/10.1016/S0168-9274(03)00054-0
21 Liu W B, Yan N N. A posteriori error estimates for optimal control problems governed by parabolic equations. Numer Math, 2003, 93: 497–521
https://doi.org/10.1007/s002110100380
22 Liu W B, Yan N N. Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Beijing: Science Press, 2008
23 Meidner D, Vexler B. Adaptive space-time finite element methods for parabolic optimization problems. SIAM J Control Optim, 2007, 4: 116–142
https://doi.org/10.1137/060648994
24 Pironneau O. Optimal Shape Design for Elliptic Systems. Berlin: Springer-Verlag, 1984
https://doi.org/10.1007/978-3-642-87722-3
25 Rui H X, Tabata M. A second order characteristic finite element scheme for convectiondiffusion problems. Numer Math, 2002, 92: 161–177
https://doi.org/10.1007/s002110100364
26 Rui H X, Tabata M. A mass-conservative characteristic finite element scheme for convection-diffusion problems. J Sci Comput, 2010, 43: 416–432
https://doi.org/10.1007/s10915-009-9283-3
27 Scott L R, Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comput, 1990, 54: 483–493
https://doi.org/10.1090/S0025-5718-1990-1011446-7
28 Tiba D. Lectures on the Optimal Control of Elliptic Equations. Jyvaskyla: University of Jyvaskyla Press, 1995
29 Veeser A. Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J Numer Anal, 2001, 39: 146–167
https://doi.org/10.1137/S0036142900370812
30 Xiong C, Li Y. A posteriori error estimates for optimal distributed control governed by the evolution equations. Appl Numer Math, 2011, 61: 181–200
https://doi.org/10.1016/j.apnum.2010.09.004
[1] Yuelong TANG, Yanping CHEN. Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems[J]. Front Math Chin, 2013, 8(2): 443-464.
[2] Yanping CHEN, Zuliang LU, Ruyi GUO. Error estimates of triangular mixed finite element methods for quasilinear optimal control problems[J]. Front Math Chin, 2012, 7(3): 397-413.
[3] YAN Ningning, ZHOU Zhaojie. A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations[J]. Front. Math. China, 2008, 3(3): 415-442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed