|
|
|
Euler-type schemes for weakly coupled forward-backward stochastic differential equations and optimal convergence analysis |
Wei ZHANG,Weidong ZHAO( ) |
| School of Mathematics, Finance Institute, Shandong University, Jinan 250100, China |
|
|
|
|
Abstract We introduce a new Euler-type scheme and its iterative algorithm for solving weakly coupled forward-backward stochastic differential equations (FBSDEs). Although the schemes share some common features with the ones proposed by C. Bender and J. Zhang [Ann. Appl. Probab., 2008, 18: 143–177], less computational work is needed for our method. For both our schemes and the ones proposed by Bender and Zhang, we rigorously obtain first-order error estimates, which improve the half-order error estimates of Bender and Zhang. Moreover, numerical tests are given to demonstrate the first-order accuracy of the schemes.
|
| Keywords
Weakly coupled forward-backward stochastic differential equations (FBSDEs)
time discretization
first-order
error estimate
Euler-type scheme
|
|
Corresponding Author(s):
Weidong ZHAO
|
|
Issue Date: 12 February 2015
|
|
| 1 |
Bally V. Approximation scheme for solutions of BSDE. In: Backward Stochastic Differential Equations (Paris, 1995-1996), Pitman Res Notes Math, Ser 364. Harlow: Longman, 1997: 177-191
|
| 2 |
Bally V, Pages G. A quantization algorithm for solving multi-dimensional discrete-time optimal stopping problems. Bernoulli, 2003, 9: 1003-1049
https://doi.org/10.3150/bj/1072215199
|
| 3 |
Bender C, Zhang J. Time discretization and Markovian iteration for coupled FBSDEs. Ann Appl Probab, 2008, 18: 143-177
https://doi.org/10.1214/07-AAP448
|
| 4 |
Bouchard B, Touzi N. Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stochastic Process Appl, 2004, 111: 175-206
https://doi.org/10.1016/j.spa.2004.01.001
|
| 5 |
Crisan D, Manolarakis K. Second order discretization of backward S<?Pub Caret?>DEs. arXiv: 1012.5650
|
| 6 |
Cvitanic J, Zhang J. The steepest descent method for forward-backward SDEs. Electron J Probab, 2005, 10: 1468-1495
https://doi.org/10.1214/EJP.v10-295
|
| 7 |
Delarue F, Menozzi S. A forward-backward stochastic algorithm for quasi-linear PDEs. Ann Appl Probab, 2006, 16: 140-184
https://doi.org/10.1214/105051605000000674
|
| 8 |
Delarue F, Menozzi S. An interpolated stochastic algorithm for quasi-linear PDEs. Math Comp, 2008, 77: 125-158
https://doi.org/10.1090/S0025-5718-07-02008-X
|
| 9 |
Douglas J, Ma J, Protter P. Numerical methods for forward-backward stochastic differential equations. Ann Appl Probab, 1996, 6: 940-968
https://doi.org/10.1214/aoap/1034968235
|
| 10 |
Gianin E R. Risk measures via g-expectations. Insurance Math Econom, 2006, 39: 19-34
https://doi.org/10.1016/j.insmatheco.2006.01.002
|
| 11 |
Hamadene S, Lepeltier J P. Zero-sum stochastic differential games and backward equations. Systems Control Lett, 1995, 24: 259-263
https://doi.org/10.1016/0167-6911(94)00011-J
|
| 12 |
Karoui N EL, Peng S G, Quenez M C. Backward stochastic differential equations in finance. Math Finance, 1997, 7: 1-71
https://doi.org/10.1111/1467-9965.00022
|
| 13 |
Lemor J P, Gobet E, Warin X. A regression-based Monte Carlo method for backward stochastic differential equations. Ann Appl Probab, 2005, 15: 2172-2202
https://doi.org/10.1214/105051605000000412
|
| 14 |
Lemor J P, Gobet E, Warin X. Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations. Bernoulli, 2006, 12: 889-916
https://doi.org/10.3150/bj/1161614951
|
| 15 |
Li Y, Zhao W D. Lp-error estimates for numerical schemes for solving certain kinds of backward stochastic differential equations. Statist Probab Lett, 2010, 80: 1612-1617
https://doi.org/10.1016/j.spl.2010.06.015
|
| 16 |
Ma J, Protter P, Martin J S, Torres S. Numerical method for backward stochastic differential equations. Ann Appl Probab, 2002, 12: 302-316
https://doi.org/10.1214/aoap/1015961165
|
| 17 |
Ma J, Protter P, Yong J M. Solving forward-backward stochastic differential equations explicitly—a four step scheme. Probab Theory Related Fields, 1994, 98: 339-359
https://doi.org/10.1007/BF01192258
|
| 18 |
Ma J, Shen J, Zhao Y. On numerical approximations of forward-backward stochastic differential equations. SIAM J Numer Anal, 2008, 46: 2636-2661
https://doi.org/10.1137/06067393X
|
| 19 |
Ma J, Yong J M. Forward-Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Mathematics, Vol 1702. Berlin: Springer, 1999
|
| 20 |
Milstein G N, Tretyakov M V. Numerical algorithms for forward-backward stochastic differential equations. SIAM J Sci Comput, 2006, 28: 561-582
https://doi.org/10.1137/040614426
|
| 21 |
Pardoux E, Peng S G. Adapted solution of a backward stochastic differential equation. Systems Control Lett, 1990, 14: 55-61
https://doi.org/10.1016/0167-6911(90)90082-6
|
| 22 |
Pardoux E, Tang S. Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probab Theory Related Fields, 1999, 114: 123-150
https://doi.org/10.1007/s004409970001
|
| 23 |
Peng S G. A general stochastic maximum principle for optimal control problems. SIAM J Control Optim, 1990, 28: 966-979
https://doi.org/10.1137/0328054
|
| 24 |
Peng S G. Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stochastics and Stochastic Reports, 1991, 37: 61-74
https://doi.org/10.1080/17442509108833727
|
| 25 |
Peng S G. Backward SDE and related g-Expectation (Paris, 1995-1996). Pitman Res Notes Math, Ser 364. Harlow: Longman, 1997: 141-159
|
| 26 |
Peng S G. Nonlinear expectations, nonlinear evaluations and risk measures. In: Stochastic Methods in Finance. Lecture Notes in Mathematics, Vol 1856. 2004, 243-256
https://doi.org/10.1007/978-3-540-44644-6_4
|
| 27 |
Peng S G, Wu Z. Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J Control Optim, 1999, 37: 825-843
https://doi.org/10.1137/S0363012996313549
|
| 28 |
Zhang J. A numerical scheme for BSDEs. Ann Appl Probab, 2004, 14: 459-488
https://doi.org/10.1214/aoap/1075828058
|
| 29 |
Zhao W D, Chen L F, Peng S G. A new kind of accurate numerical method for backward stochastic differential equations. SIAM J Sci Comput, 2006, 28: 1563-1581
https://doi.org/10.1137/05063341X
|
| 30 |
Zhao W D, Fu Y, Zhou T. A new kind of high-order multi-step schemes for forward backward stochastic differential equations. arXiv: 1310.5307, revised
|
| 31 |
Zhao W D, Li Y, Ju L L. Error estimates of the Crank-Nicolson scheme for solving backward stochastic differential equations. Int J Numer Anal Model, 2013, 10: 876-898
|
| 32 |
Zhao W D, Li Y, Zhang G N. A generalized θ-scheme for solving backward stochastic differential equations. Discrete Contin Dyn Syst Ser B, 2012, 17: 1585-1603
https://doi.org/10.3934/dcdsb.2012.17.1585
|
| 33 |
Zhao W D, Wang J L, Peng S G. Error estimates of the θ-scheme for backward stochastic differential equations. Discrete Contin Dyn Syst Ser B, 2009, 12: 905-924
https://doi.org/10.3934/dcdsb.2009.12.905
|
| 34 |
Zhao W D, Zhang G N, Ju L L. A stable multistep scheme for solving backward stochastic differential equations. SIAM J Numer Anal, 2010, 48: 1369-1394
https://doi.org/10.1137/09076979X
|
| 35 |
Zhao W D, Zhang W, Ju L L. A numerical method and its error estimates for the decoupled forward-backward stochastic differential equations. Commun Comput Phys, 2014, 15: 618-646
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|