Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (1) : 97-115    https://doi.org/10.1007/s11464-016-0551-x
RESEARCH ARTICLE
On the homotopy category of AC-injective complexes
James GILLESPIE()
Ramapo College of New Jersey, School of Theoretical and Applied Science, Mahwah, NJ 07430, USA
 Download: PDF(217 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let R be any ring. We motivate the study of a class of chain complexes of injective R-modules that we call AC-injective complexes, showing that K(AC-Inj), the chain homotopy category of all AC-injective complexes, is always a compactly generated triangulated category. In general, all DGinjective complexes are AC-injective and in fact there is a recollement linking K(AC-Inj) to the usual derived category D(R). This is based on the author’s recent work inspired by work of Krause and Stovicek. Our focus here is on giving straightforward proofs that our categories are compactly generated.

Keywords AC-injective      recollement      compactly generated      triangulated category     
Corresponding Author(s): James GILLESPIE   
Issue Date: 17 November 2016
 Cite this article:   
James GILLESPIE. On the homotopy category of AC-injective complexes[J]. Front. Math. China, 2017, 12(1): 97-115.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0551-x
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I1/97
1 Bravo D, Enochs E E, Iacob A, Jenda O, Rada J. Cotorsion pairs in C(R-Mod). Rocky Mountain J Math, 2012, 42(6): 1787–1802
https://doi.org/10.1216/RMJ-2012-42-6-1787
2 Bravo D, Gillespie J. Absolutely clean, level, and Gorenstein AC-injective complexes. Comm Algebra, 2016, 44(5): 2213–2233
https://doi.org/10.1080/00927872.2015.1044100
3 Bravo D, Gillespie J, Hovey M. The stable module category of a general ring (submitted)
4 Bühler T. Exact categories. Expo Math, 2010, 28(1): 1–69
https://doi.org/10.1016/j.exmath.2009.04.004
5 Enochs E E, and Jenda O M G. Relative Homological Algebra. de Gruyter Exp Math, Vol 30. Berlin: Walter de Gruyter & Co, 2000
https://doi.org/10.1515/9783110803662
6 Gillespie J. The flat model structure on Ch(R). Trans Amer Math Soc, 2004, 356(8): 3369–3390
https://doi.org/10.1090/S0002-9947-04-03416-6
7 Gillespie J. Cotorsion pairs and degreewise homological model structures. Homology, Homotopy Appl, 2008, 10(1): 283–304
https://doi.org/10.4310/HHA.2008.v10.n1.a12
8 Gillespie J. Model structures on exact categories. J Pure Appl Algebra, 2011, 215: 2892–2902
https://doi.org/10.1016/j.jpaa.2011.04.010
9 Gillespie J. How to construct a Hovey triple from two cotorsion pairs. Fund Math, 2015, 230(3): 281–289
https://doi.org/10.4064/fm230-3-4
10 Gillespie J. Models for homotopy categories of injective and Gorenstein injectives. 2015, arXiv: 1502.05530
11 Gillespie J. Gorenstein complexes and recollements from cotorsion pairs. Adv Math, 2016, 291: 859–911
https://doi.org/10.1016/j.aim.2016.01.004
12 Gillespie J. Models for mock homotopy categories of projectives. Homology, Homotopy Appl, 2016, 18(1): 247–263
https://doi.org/10.4310/HHA.2016.v18.n1.a13
13 Hovey M. Cotorsion pairs, model category structures, and representation theory. Math Z, 2002, 241: 553–592
https://doi.org/10.1007/s00209-002-0431-9
14 Keller B. Derived categories and their uses. In: Handbook of Algebra, Vol 1. Amsterdam: North-Holland, 1996, 671–701
https://doi.org/10.1016/s1570-7954(96)80023-4
15 Krause H. The stable derived category of a Noetherian scheme. Compos Math, 2005, 141(5): 1128–1162
https://doi.org/10.1112/S0010437X05001375
16 Neeman A. The derived category of an exact category. J Algebra, 1990, 135: 388–394
https://doi.org/10.1016/0021-8693(90)90296-Z
17 Neeman A. Triangulated Categories. Ann of Math Studies, Vol 148. Princeton: Princeton University Press, 2001
18 Stovicek J. Exact model categories, approximation theory, and cohomology of quasicoherent sheaves. In: Advances in Representation Theory of Algebras (ICRA Bielefeld, Germany, 8-17 August, 2012). EMS Series of Congress Reports. Zürich: Eur Math Soc Publishing House, 2014, 297–367
19 Stovicek J. On purity and applications to coderived and singularity categories. arXiv: 1412.1615
20 Weibel C A. An Introduction to Homological Algebra. Cambridge Stud Adv Math, Vol 38. Cambridge: Cambridge University Press, 1994
https://doi.org/10.1017/CBO9781139644136
21 Yang G, Liu Z K. Cotorsion pairs and model structures on Ch(R). Proc Edinb Math Soc (2), 2011, 54(3): 783–797
22 Yang X Y, Ding N Q. On a question of Gillespie. Forum Math, 2015, 27(6): 3205–3231
https://doi.org/10.1515/forum-2013-6014
[1] Bin ZHU, Xiao ZHUANG. Tilting subcategories in extriangulated categories[J]. Front. Math. China, 2020, 15(1): 225-253.
[2] Yonggang HU, Hailou YAO. Relative homological dimensions in recollements of triangulated categories[J]. Front. Math. China, 2019, 14(1): 25-43.
[3] Xin MA, Zhaoyong HUANG. Torsion pairs in recollements of abelian categories[J]. Front. Math. China, 2018, 13(4): 875-892.
[4] Peng YU. A recollement construction of Gorenstein derived categories[J]. Front. Math. China, 2018, 13(3): 691-713.
[5] Ruixin LI, Miantao LIU, Nan GAO. Algebraic K-theory of Gorenstein projective modules[J]. Front. Math. China, 2018, 13(1): 55-66.
[6] Changchang XI. Constructions of derived equivalences for algebras and rings[J]. Front. Math. China, 2017, 12(1): 1-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed