|
|
|
Relative homological dimensions in recollements of triangulated categories |
Yonggang HU, Hailou YAO( ) |
| College of Applied Sciences, Beijing University of Technology, Beijing 100124, China |
|
|
|
|
Abstract Let be a proper class of triangles in a triangulated category , and let () be a recollement of triangulated categories. Based on Beligiannis's work, we prove that and have enough -projective objects whenever does. Moreover, in this paper, we give the bounds for the -global dimension of in a recollement () by controlling the behavior of the -global dimensions of the triangulated categories and : In particular, we show that the niteness of the -global dimensions of triangulated categories is invariant with respect to the recollements of triangulated categories.
|
| Keywords
Triangulated category
proper class of triangles
recollement
E - global dimension')" href="#"> - global dimension
derived category
|
|
Corresponding Author(s):
Hailou YAO
|
|
Issue Date: 22 March 2019
|
|
| 1 |
LAngeleri Hügel, S Koenig, Q HLiu. Recollements and tilting objects. J Pure Appl Algebra, 2011, 215: 420–438
|
| 2 |
LAngeleri Hügel, S Koenig, Q HLiu, DYang. Ladders and simplicity of derived module categories. J Algebra, 2017, 472: 15–66
|
| 3 |
JAsadollahi, S Salaria. Gorenstein objects in triangulated categories. J Algebra, 2004, 281: 264–286
|
| 4 |
JAsadollahi, S Salaria. Tate cohomology and Gorensteinness for triangulated categories. J Algebra, 2006, 299: 480–502
|
| 5 |
MAuslander, R O Buchweitz. The homological theory of maximal Cohen–Macaulay approximations. Mém Soc Math Fr (N S), 1989, 38: 5–37
|
| 6 |
A ABeilinson, J Bernstein, PDeligne. Faisceaux pervers, analysis and topology on singular spaces, I. Astérisque, 1982, 100: 5–171
|
| 7 |
ABeligiannis. Relative homological algebra and purity in triangulated categories. J Algebra, 2000, 227: 268–361
|
| 8 |
H XChen, C CXi. Recollements of derived categories II: algebraic K-theory. 2012, arXiv: 1203.5168
|
| 9 |
H XChen, C CXi. Recollements of derived categories III: nitistic dimensions. J Lond Math Soc (2), 2017, 95: 633–658
|
| 10 |
NGao. Gorensteinness, homological invariants and Gorenstein derived categories. Sci China Math, 2017, 60(3): 431–438
|
| 11 |
YHan. Recollements and Hochschild theory. J Algebra, 2014, 397: 535–547
|
| 12 |
DHappel. Reduction techniques for homological conjectures. Tsukuba J Math, 1993, 17: 115–130
|
| 13 |
BKeller. DerivingDG categories. Ann Sci Éc Norm Supér (4), 1994, 1: 63–102
|
| 14 |
SKoenig. Tilting complexes, perpendicular categories and recollements of derived module categories of rings. J Pure Appl Algebra, 1991, 73: 211–232
|
| 15 |
L PLi. Derived equivalences between triangular matrix algebras. Comm Algebra, 2018, 46(2): 615–628
|
| 16 |
RMacPherson, K Vilonen. Elementary construction of perverse sheaves. Invent Math, 1986, 84: 403–485
|
| 17 |
H RMargolis. Spectra and the Steenrod Algebra. North-Holland Math Library, Vol 29. Amsterdam: North-Holland Publishing Co, 1983
|
| 18 |
ANeeman. Triangulated Categories. Ann of Math Stud, Vol 148. Princeton: Princeton Univ Press, 2001
|
| 19 |
PNicolás. On torsion torsionfree triple. 2007, arXiv: 0801.0507
|
| 20 |
CPsaroudakis. Homological theory of recollements of abelian categories. J Algebra, 2014, 398: 63–110
|
| 21 |
Y YQin. Recollements and homological dimensions. Comm Algebra, 2018, 46(1): 1–12
|
| 22 |
Y YQin, YHan. Reducing homological conjectures by n-recollements. Algebr Represent Theory, 2016, 19: 377–395
|
| 23 |
WRen, Z KLiu. Gorenstein homological dimensions for triangulated categories. J Algebra, 2014, 410: 258–276
|
| 24 |
JRickard. Morita theory for derived categories. Bull Lond Math Soc, 1984, 16(5): 518–522
|
| 25 |
J LVerdier. Catégories dérivées, état 0. In: Lecture Notes in Math, Vol 569. Berlin: Springer-Verlag, 1977, 262–311
|
| 26 |
PZhang. Categorical resolutions of a class of derived categories. Sci China Math, 2018, 61: 1–12
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|