E - global dimension,derived category," /> E - global dimension,derived category,"/> E - global dimension,derived category,"/>
Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (1) : 25-43    https://doi.org/10.1007/s11464-019-0751-2
RESEARCH ARTICLE
Relative homological dimensions in recollements of triangulated categories
Yonggang HU, Hailou YAO()
College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
 Download: PDF(323 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let E be a proper class of triangles in a triangulated category C, and let ( A,B,C) be a recollement of triangulated categories. Based on Beligiannis's work, we prove that A and C have enough E -projective objects whenever B does. Moreover, in this paper, we give the bounds for the E -global dimension of B in a recollement (A,B,C) by controlling the behavior of the E -global dimensions of the triangulated categories A and C : In particular, we show that the niteness of the E -global dimensions of triangulated categories is invariant with respect to the recollements of triangulated categories.

Keywords Triangulated category      proper class of triangles      recollement      E - global dimension')" href="#"> E - global dimension      derived category     
Corresponding Author(s): Hailou YAO   
Issue Date: 22 March 2019
 Cite this article:   
Yonggang HU,Hailou YAO. Relative homological dimensions in recollements of triangulated categories[J]. Front. Math. China, 2019, 14(1): 25-43.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0751-2
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I1/25
1 LAngeleri Hügel, S Koenig, Q HLiu. Recollements and tilting objects. J Pure Appl Algebra, 2011, 215: 420–438
2 LAngeleri Hügel, S Koenig, Q HLiu, DYang. Ladders and simplicity of derived module categories. J Algebra, 2017, 472: 15–66
3 JAsadollahi, S Salaria. Gorenstein objects in triangulated categories. J Algebra, 2004, 281: 264–286
4 JAsadollahi, S Salaria. Tate cohomology and Gorensteinness for triangulated categories. J Algebra, 2006, 299: 480–502
5 MAuslander, R O Buchweitz. The homological theory of maximal Cohen–Macaulay approximations. Mém Soc Math Fr (N S), 1989, 38: 5–37
6 A ABeilinson, J Bernstein, PDeligne. Faisceaux pervers, analysis and topology on singular spaces, I. Astérisque, 1982, 100: 5–171
7 ABeligiannis. Relative homological algebra and purity in triangulated categories. J Algebra, 2000, 227: 268–361
8 H XChen, C CXi. Recollements of derived categories II: algebraic K-theory. 2012, arXiv: 1203.5168
9 H XChen, C CXi. Recollements of derived categories III: nitistic dimensions. J Lond Math Soc (2), 2017, 95: 633–658
10 NGao. Gorensteinness, homological invariants and Gorenstein derived categories. Sci China Math, 2017, 60(3): 431–438
11 YHan. Recollements and Hochschild theory. J Algebra, 2014, 397: 535–547
12 DHappel. Reduction techniques for homological conjectures. Tsukuba J Math, 1993, 17: 115–130
13 BKeller. DerivingDG categories. Ann Sci Éc Norm Supér (4), 1994, 1: 63–102
14 SKoenig. Tilting complexes, perpendicular categories and recollements of derived module categories of rings. J Pure Appl Algebra, 1991, 73: 211–232
15 L PLi. Derived equivalences between triangular matrix algebras. Comm Algebra, 2018, 46(2): 615–628
16 RMacPherson, K Vilonen. Elementary construction of perverse sheaves. Invent Math, 1986, 84: 403–485
17 H RMargolis. Spectra and the Steenrod Algebra. North-Holland Math Library, Vol 29. Amsterdam: North-Holland Publishing Co, 1983
18 ANeeman. Triangulated Categories. Ann of Math Stud, Vol 148. Princeton: Princeton Univ Press, 2001
19 PNicolás. On torsion torsionfree triple. 2007, arXiv: 0801.0507
20 CPsaroudakis. Homological theory of recollements of abelian categories. J Algebra, 2014, 398: 63–110
21 Y YQin. Recollements and homological dimensions. Comm Algebra, 2018, 46(1): 1–12
22 Y YQin, YHan. Reducing homological conjectures by n-recollements. Algebr Represent Theory, 2016, 19: 377–395
23 WRen, Z KLiu. Gorenstein homological dimensions for triangulated categories. J Algebra, 2014, 410: 258–276
24 JRickard. Morita theory for derived categories. Bull Lond Math Soc, 1984, 16(5): 518–522
25 J LVerdier. Catégories dérivées, état 0. In: Lecture Notes in Math, Vol 569. Berlin: Springer-Verlag, 1977, 262–311
26 PZhang. Categorical resolutions of a class of derived categories. Sci China Math, 2018, 61: 1–12
[1] Bin ZHU, Xiao ZHUANG. Tilting subcategories in extriangulated categories[J]. Front. Math. China, 2020, 15(1): 225-253.
[2] Xin MA, Zhaoyong HUANG. Torsion pairs in recollements of abelian categories[J]. Front. Math. China, 2018, 13(4): 875-892.
[3] Peng YU. A recollement construction of Gorenstein derived categories[J]. Front. Math. China, 2018, 13(3): 691-713.
[4] Ruixin LI, Miantao LIU, Nan GAO. Algebraic K-theory of Gorenstein projective modules[J]. Front. Math. China, 2018, 13(1): 55-66.
[5] Changchang XI. Constructions of derived equivalences for algebras and rings[J]. Front. Math. China, 2017, 12(1): 1-18.
[6] James GILLESPIE. On the homotopy category of AC-injective complexes[J]. Front. Math. China, 2017, 12(1): 97-115.
[7] Fang LI,Lingyu WAN. On duality preservability of Auslander-Reiten quivers of derived categories and cluster categories[J]. Front. Math. China, 2016, 11(4): 957-984.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed