|
|
|
Algebraic K-theory of Gorenstein projective modules |
Ruixin LI, Miantao LIU, Nan GAO( ) |
| Department of Mathematics, Shanghai University, Shanghai 200444, China |
|
|
|
|
Abstract We introduce the Gorenstein algebraic K-theory space and the Gorenstein algebraic K-group of a ring, and show the relation with the classical algebraic K-theory space, and also show the ‘resolution theorem’ in this context due to Quillen. We characterize the Gorenstein algebraic K-groups by two different algebraic K-groups and by the idempotent completeness of the Gorenstein singularity category of the ring. We compute the Gorenstein algebraic K-groups along a recollement of the bounded Gorenstein derived categories of CM-finite Gorenstein algebras.
|
| Keywords
Frobenius pair
Gorenstein projective module
Gorenstein algebraic K-group
idempotent complete category
recollement
|
|
Corresponding Author(s):
Nan GAO
|
|
Issue Date: 12 January 2018
|
|
| 1 |
Auslander M, Bridger M. Stable Module Theory. Mem Amer Math Soc, No 94. Providence: Amer Math Soc, 1969
|
| 2 |
Balmer P, Schlichting M. Idempotent completion of triangulated categories. J Algebra, 2001, 236: 819–834
https://doi.org/10.1006/jabr.2000.8529
|
| 3 |
Bao Y H, Du X N, Zhao Z B. Gorenstein singularity categories. J Algebra, 2015, 428: 122–137
https://doi.org/10.1016/j.jalgebra.2015.01.011
|
| 4 |
Beligiannis A. On algebras of finite Cohen-Macaulay type. Adv Math, 2011, 226: 1973–2019
https://doi.org/10.1016/j.aim.2010.09.006
|
| 5 |
Chen H X, Xi C C. Recollements of derived categories II: Algebraic K-theory. 2014, ArXiv: 1212.1879
|
| 6 |
Chen H X, Xi C C. Higher algebraic K-theory of ring epimorphisms. Algebr Represent Theory, 2016, 19: 1347–1367
https://doi.org/10.1007/s10468-016-9621-8
|
| 7 |
Enochs E E, Jenda O M G. Relative Homological Algebra. de Gruyter Exp Math, Vol 30. Berlin: Walter De Gruyter, 2000
https://doi.org/10.1515/9783110803662
|
| 8 |
Gao N, Zhang P. Gorenstein derived categories. J Algebra, 2010, 323: 2041–2057
https://doi.org/10.1016/j.jalgebra.2010.01.027
|
| 9 |
Happel D. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Math Soc Lecture Notes Ser, Vol 119. Cambridge: Cambridge Univ Press, 1988
|
| 10 |
Hügel L A, König S, Liu Q H, Yang D. Ladders and simplicity of derived module categories. J Algebra, 2017, 472: 15–66
https://doi.org/10.1016/j.jalgebra.2016.10.023
|
| 11 |
Keller B. Chain complexes and stable categories. Manuscripta Math, 1990, 67(4): 379–417
https://doi.org/10.1007/BF02568439
|
| 12 |
Keller B. Derived categories and their uses. In: Hazewinkel M, ed. Handbook of Algebra, Vol 1. Amsterdam: North-Holland, 1996, 671–701
https://doi.org/10.1016/S1570-7954(96)80023-4
|
| 13 |
Quillen D. Higher algebraic K-theory I. In: Bass H, ed. Algebraic K-Theories. Proceedings of the Conference held at the Seattle Research Center of Battelle Memorial Institute, from August 28 to September 8, 1972. Lecture Notes in Math, Vol 341. Berlin: Springer, 1973, 85–147
https://doi.org/10.1007/BFb0067053
|
| 14 |
Schlichting M. Negative K-theory of derived categories. Math Z, 2006, 253: 97–134
https://doi.org/10.1007/s00209-005-0889-3
|
| 15 |
Thomason R W, Trobaugh T. Higher algebraic K-theory of schemes and of derived categories. In: Cartier P, Illusie L, Katz N M, Laumon G, Manin Y, Ribet K A, eds. The Grothendieck Festschrift, Vol III. Progr Mathematics, Vol 88. Boston: Birkhäuser, 1990, 247–435
https://doi.org/10.1007/978-0-8176-4576-2_10
|
| 16 |
Waldhausen F. Algebraic K-theory of spaces. In: Ranicki A, Levitt N, Quinn F, eds. Algebraic and Geometric Topology. Lecture Notes in Math, Vol 1126.Berlin: Springer, 1983, 318–419
https://doi.org/10.1007/BFb0074449
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|