Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (1) : 55-66    https://doi.org/10.1007/s11464-017-0673-9
RESEARCH ARTICLE
Algebraic K-theory of Gorenstein projective modules
Ruixin LI, Miantao LIU, Nan GAO()
Department of Mathematics, Shanghai University, Shanghai 200444, China
 Download: PDF(160 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We introduce the Gorenstein algebraic K-theory space and the Gorenstein algebraic K-group of a ring, and show the relation with the classical algebraic K-theory space, and also show the ‘resolution theorem’ in this context due to Quillen. We characterize the Gorenstein algebraic K-groups by two different algebraic K-groups and by the idempotent completeness of the Gorenstein singularity category of the ring. We compute the Gorenstein algebraic K-groups along a recollement of the bounded Gorenstein derived categories of CM-finite Gorenstein algebras.

Keywords Frobenius pair      Gorenstein projective module      Gorenstein algebraic K-group      idempotent complete category      recollement     
Corresponding Author(s): Nan GAO   
Issue Date: 12 January 2018
 Cite this article:   
Ruixin LI,Miantao LIU,Nan GAO. Algebraic K-theory of Gorenstein projective modules[J]. Front. Math. China, 2018, 13(1): 55-66.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-017-0673-9
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I1/55
1 Auslander M, Bridger M. Stable Module Theory. Mem Amer Math Soc, No 94. Providence: Amer Math Soc, 1969
2 Balmer P, Schlichting M. Idempotent completion of triangulated categories. J Algebra, 2001, 236: 819–834
https://doi.org/10.1006/jabr.2000.8529
3 Bao Y H, Du X N, Zhao Z B. Gorenstein singularity categories. J Algebra, 2015, 428: 122–137
https://doi.org/10.1016/j.jalgebra.2015.01.011
4 Beligiannis A. On algebras of finite Cohen-Macaulay type. Adv Math, 2011, 226: 1973–2019
https://doi.org/10.1016/j.aim.2010.09.006
5 Chen H X, Xi C C. Recollements of derived categories II: Algebraic K-theory. 2014, ArXiv: 1212.1879
6 Chen H X, Xi C C. Higher algebraic K-theory of ring epimorphisms. Algebr Represent Theory, 2016, 19: 1347–1367
https://doi.org/10.1007/s10468-016-9621-8
7 Enochs E E, Jenda O M G. Relative Homological Algebra. de Gruyter Exp Math, Vol 30. Berlin: Walter De Gruyter, 2000
https://doi.org/10.1515/9783110803662
8 Gao N, Zhang P. Gorenstein derived categories. J Algebra, 2010, 323: 2041–2057
https://doi.org/10.1016/j.jalgebra.2010.01.027
9 Happel D. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Math Soc Lecture Notes Ser, Vol 119. Cambridge: Cambridge Univ Press, 1988
10 Hügel L A, König S, Liu Q H, Yang D. Ladders and simplicity of derived module categories. J Algebra, 2017, 472: 15–66
https://doi.org/10.1016/j.jalgebra.2016.10.023
11 Keller B. Chain complexes and stable categories. Manuscripta Math, 1990, 67(4): 379–417
https://doi.org/10.1007/BF02568439
12 Keller B. Derived categories and their uses. In: Hazewinkel M, ed. Handbook of Algebra, Vol 1. Amsterdam: North-Holland, 1996, 671–701
https://doi.org/10.1016/S1570-7954(96)80023-4
13 Quillen D. Higher algebraic K-theory I. In: Bass H, ed. Algebraic K-Theories. Proceedings of the Conference held at the Seattle Research Center of Battelle Memorial Institute, from August 28 to September 8, 1972. Lecture Notes in Math, Vol 341. Berlin: Springer, 1973, 85–147
https://doi.org/10.1007/BFb0067053
14 Schlichting M. Negative K-theory of derived categories. Math Z, 2006, 253: 97–134
https://doi.org/10.1007/s00209-005-0889-3
15 Thomason R W, Trobaugh T. Higher algebraic K-theory of schemes and of derived categories. In: Cartier P, Illusie L, Katz N M, Laumon G, Manin Y, Ribet K A, eds. The Grothendieck Festschrift, Vol III. Progr Mathematics, Vol 88. Boston: Birkhäuser, 1990, 247–435
https://doi.org/10.1007/978-0-8176-4576-2_10
16 Waldhausen F. Algebraic K-theory of spaces. In: Ranicki A, Levitt N, Quinn F, eds. Algebraic and Geometric Topology. Lecture Notes in Math, Vol 1126.Berlin: Springer, 1983, 318–419
https://doi.org/10.1007/BFb0074449
[1] Yonggang HU, Hailou YAO. Relative homological dimensions in recollements of triangulated categories[J]. Front. Math. China, 2019, 14(1): 25-43.
[2] Xin MA, Zhaoyong HUANG. Torsion pairs in recollements of abelian categories[J]. Front. Math. China, 2018, 13(4): 875-892.
[3] Peng YU. A recollement construction of Gorenstein derived categories[J]. Front. Math. China, 2018, 13(3): 691-713.
[4] Changchang XI. Constructions of derived equivalences for algebras and rings[J]. Front. Math. China, 2017, 12(1): 1-18.
[5] James GILLESPIE. On the homotopy category of AC-injective complexes[J]. Front. Math. China, 2017, 12(1): 97-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed