Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (5) : 1063-1073    https://doi.org/10.1007/s11464-018-0721-0
RESEARCH ARTICLE
Minimal periodic solutions of first-order convex Hamiltonian systems with anisotropic growth
Chungen LIU1(), Li ZUO2, Xiaofei ZHANG2
1. School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China
2. School of Mathematics, Nankai University, Tianjin 300071, China
 Download: PDF(147 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Keywords Hamiltonian system      minimal period      Fenchel’s transform      subdifferential     
Corresponding Author(s): Chungen LIU   
Issue Date: 29 October 2018
 Cite this article:   
Chungen LIU,Li ZUO,Xiaofei ZHANG. Minimal periodic solutions of first-order convex Hamiltonian systems with anisotropic growth[J]. Front. Math. China, 2018, 13(5): 1063-1073.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-018-0721-0
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I5/1063
1 An T, Wang Z. Periodic solutions of Hamiltonian systems with anisotropic growth. Commun Pure Appl Anal, 2010, 9: 1069–1082
https://doi.org/10.3934/cpaa.2010.9.1069
2 Aubin J-P. Mathematical Methods of Game and Economic Theory. Amsterdam: North-Holland, 1979
3 Clarke F H, Ekeland I. Hamiltonian trajectories having prescribed minimal period. Comm Pure Appl Math, 1980, 33: 103–116
https://doi.org/10.1002/cpa.3160330202
4 Dong D, Long Y. The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems. Trans Amer Math Soc, 1997, 349: 2619–2661
https://doi.org/10.1090/S0002-9947-97-01718-2
5 Ekeland I. Convexity Methods in Hamiltonian Mechanics. Berlin: Springer, 1990
https://doi.org/10.1007/978-3-642-74331-3
6 Ekeland I, Hofer H. Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems. Invent Math, 1985, 81: 155–188
https://doi.org/10.1007/BF01388776
7 Fei G, Kim S, Wang T. Minimal period estimates of period solutions for superquadratic Hamiltonian systems. J Math Anal Appl, 1999, 238: 216–233
https://doi.org/10.1006/jmaa.1999.6527
8 Fei G, Qiu Q. Minimal period solutions of nonlinear Hamiltonian systems. Nonlinear Anal, 1996, 27: 821–839
https://doi.org/10.1016/0362-546X(95)00077-9
9 Felmer P L. Periodic solutions of “superquadratic” Hamiltonian systems. J Differential Equations, 1993, 18: 188–207
https://doi.org/10.1006/jdeq.1993.1027
10 Li C. The study of minimal period estimates for brake orbits of autonomous subquadratic Hamiltonian systems. Acta Math Sin (Engl Ser), 2015, 31: 1645–1658
https://doi.org/10.1007/s10114-015-4421-3
11 Liu C. Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. Discrete Contin Dyn Syst, 2010, 27: 337–355
https://doi.org/10.3934/dcds.2010.27.337
12 Liu C, Zhang X. Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth. Discrete Contin Dyn Syst, 2017, 37: 1559–1574
13 Long Y. The minimal period problem for classical Hamiltonian systems with even potentials. Ann Inst H Poincaré Anal Non Linéaire, 1993, 10: 605–626
https://doi.org/10.1016/S0294-1449(16)30199-8
14 Long Y. The minimal period problem of periodic solutions for autonomous superquadratic second order Hamiltonian systems. J Differential Equations, 1994, 111: 147–174
https://doi.org/10.1006/jdeq.1994.1079
15 Long Y. On the minimal period for periodic solutions of nonlinear Hamiltonian systems. Chin Ann Math Ser B, 1997, 18: 481–485
16 Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems. Berlin: Springer, 1989
https://doi.org/10.1007/978-1-4757-2061-7
17 Rabinowitz P H. Periodic solutions of Hamiltonian systems. Comm Pure Appl Math, 1978, 31: 157–184
https://doi.org/10.1002/cpa.3160310203
18 Rabinowitz P H. Periodic solutions of Hamiltonian systems: a survey. SIAM J Math Anal, 1982, 13: 343–352
https://doi.org/10.1137/0513027
19 Roberts A, Varberg D. Another proof that convex functions are locally Lipschitz. Amer Math Monthly, 1974, 81: 1014–1016
https://doi.org/10.1080/00029890.1974.11993721
20 Xing Q, Guo F, Zhang X. One generalized critical point theorem and its applications on super-quadratic Hamiltonian systems. Taiwanese J Math, 2016, 20: 1093–1116
https://doi.org/10.11650/tjm.20.2016.7128
21 Zhang D. Symmetric period solutions with prescribed minimal period for even autonomous semipositive Hamiltonian systems. Sci China Math, 2014, 57: 81–96
https://doi.org/10.1007/s11425-013-4598-9
[1] Hui LIU, Hui ZHANG. Multiple P-cyclic symmetric closed characteristics on compact convex P-cyclic symmetric hypersurfaces in 2n[J]. Front. Math. China, 2020, 15(6): 1155-1173.
[2] Xingfan CHEN, Fei GUO, Peng LIU. Existence of periodic solutions for second-order Hamiltonian systems with asymptotically linear conditions[J]. Front. Math. China, 2018, 13(6): 1313-1323.
[3] Jiashun HU, Xiang MA, Chunxiong ZHENG. Global geometrical optics method for vector-valued Schrödinger problems[J]. Front. Math. China, 2018, 13(3): 579-606.
[4] Chungen LIU, Benxing ZHOU. Minimal P-symmetric period problem of first-order autonomous Hamiltonian systems[J]. Front. Math. China, 2017, 12(3): 641-654.
[5] Xiumei XING,Lei JIAO. Boundedness of semilinear Duffing equations with singularity[J]. Front. Math. China, 2014, 9(6): 1427-1452.
[6] Linping PENG. Quadratic perturbations of a quadratic reversible center of genus one[J]. Front Math Chin, 2011, 6(5): 911-930.
[7] GHOUSSOUB Nassif. Hamiltonian systems as selfdual equations[J]. Front. Math. China, 2008, 3(2): 167-193.
[8] BERTI Massimiliano, BOLLE Philippe. Cantor families of periodic solutions for completely resonant wave equations[J]. Front. Math. China, 2008, 3(2): 151-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed