Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (3) : 579-606    https://doi.org/10.1007/s11464-018-0704-1
RESEARCH ARTICLE
Global geometrical optics method for vector-valued Schrödinger problems
Jiashun HU(), Xiang MA, Chunxiong ZHENG
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
 Download: PDF(2496 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We extend the theory of global geometrical optics method, proposed originally for the linear scalar high-frequency wave-like equations in [Commun. Math. Sci., 2013, 11(1): 105-140], to the more general vectorvalued Schrödinger problems in the semi-classical regime. The key ingredient in the global geometrical optics method is a moving frame technique in the phase space. The governing equation is transformed into a new equation but of the same type when expressed in any moving frame induced by the underlying Hamiltonian ow. The classical Wentzel-Kramers-Brillouin (WKB) analysis benefits from this treatment as it maintains valid for arbitrary but fixed evolutionary time. It turns out that a WKB-type function defined merely on the underlying Lagrangian submanifold can be obtained with the help of this moving frame technique, and from which a uniform first-order approximation of the wave field can be derived, even around caustics. The general theory is exemplified by two specific instances. One is the two-level Schrödinger system and the other is the periodic Schrödinger equation. Numerical tests validate the theoretical results.

Keywords Global geometrical optics method      Hamiltonian system      unitary representation      caustics      semiclassical approximation     
Corresponding Author(s): Jiashun HU   
Issue Date: 11 June 2018
 Cite this article:   
Jiashun HU,Xiang MA,Chunxiong ZHENG. Global geometrical optics method for vector-valued Schrödinger problems[J]. Front. Math. China, 2018, 13(3): 579-606.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-018-0704-1
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I3/579
1 Bao W, Jin S, Markowich P A. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J Comput Phys, 2002, 175: 487–524
https://doi.org/10.1006/jcph.2001.6956
2 Carles R, Sparber C. Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials. Discrete Contin Dyn Syst Ser B, 2012, 17(3): 757–774
https://doi.org/10.3934/dcdsb.2012.17.759
3 Chai L, Jin S, Li Q. Semi-classical models for the Schrödinger equation with periodic potentials and band crossings. Kinet Relat Models, 2013, 6: 505–532
https://doi.org/10.3934/krm.2013.6.505
4 Chai L, Jin S, Li Q, Morandi O. A multiband semiclassical model for surface hopping quantum dynamics. Multiscale Model Simul, 2015, 13(1): 205–230
https://doi.org/10.1137/140967842
5 Chai L, Jin S, Markowich P A. A hybrid method for computing the Schrödinger equations with periodic potential with band-crossings in the momentum space. Commun Comput Phys, Special Issue in Honor of the 80th Birthday of Prof. Houde Han (to appear)
6 Faraj A, Jin S. The Landau-Zener transition and the surface hopping method for the 2D Dirac equation for graphene. Commun Comput Phys, 2017, 21(2): 313–357
https://doi.org/10.4208/cicp.020515.250716a
7 Folland G B. Harmonic Analysis in Phase Space.Princeton: Princeton Univ Press, 1989
8 Gerard P, Markowich P A, Mauser N, Poupaud F. Homogenization limits and Wigner transforms. Comm Pure Appl Math, 1997, 50: 323–379
https://doi.org/10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C
9 Hagedorn G, Robinson S. Bohr-Sommerfeld quantization rules in the semiclassical limit. J Phys A, 1998, 31(50): 10113–10130
https://doi.org/10.1088/0305-4470/31/50/009
10 Holstein B. Topics in Advanced Quantum Mechanics.Redwood City: Addison-Wesley, 1992
11 Huang Z, Jin S, Markowich P A, Sparber C. A Bloch decomposition based split-step pseudo spectral method for quantum dynamics with periodic potentials. SIAM J Sci Comput, 2007, 29(2): 515–538
https://doi.org/10.1137/060652026
12 Huang Z, Jin S, Markowich P A, Sparber C, Zheng C. A time-splitting spectral scheme for the Maxwell-Dirac system. J Comput Phys, 2005, 208(2): 761–789
https://doi.org/10.1016/j.jcp.2005.02.026
13 Jin S, Markowich P A, Sparber C. Mathematical and computational methods for semi-classical Schrödinger equations. Acta Numer, 2011, 20: 211–289
https://doi.org/10.1017/S0962492911000031
14 Karasev M V. Connections on Lagrangian submanifolds and some quasiclassical approximation problems I. J Soviet Math, 1992, 59(5): 1053–1062
15 Maslov V P, Fedoryuk M V. Semi-Classical Approximation in Quantum Mechanics.Dordrecht: D Reidel Pub Co, 1981
https://doi.org/10.1007/978-94-009-8410-3
16 Voros A. Wentzel-Kramers-Brillouin method in the Bargmann representation. Phys Rev A, 1989, 40(3): 6814–6825
https://doi.org/10.1103/PhysRevA.40.6814
17 Wu H, Huang Z, Jin S, Yin D. Gaussian beam methods for the Dirac equation in the semi-classical regime. Commun Math Sci, 2012, 10: 1301–1315
https://doi.org/10.4310/CMS.2012.v10.n4.a14
18 Zheng C. Global geometrical optics method. Commun Math Sci, 2013, 11(1): 105–140
https://doi.org/10.4310/CMS.2013.v11.n1.a4
[1] Hui LIU, Hui ZHANG. Multiple P-cyclic symmetric closed characteristics on compact convex P-cyclic symmetric hypersurfaces in 2n[J]. Front. Math. China, 2020, 15(6): 1155-1173.
[2] Xingfan CHEN, Fei GUO, Peng LIU. Existence of periodic solutions for second-order Hamiltonian systems with asymptotically linear conditions[J]. Front. Math. China, 2018, 13(6): 1313-1323.
[3] Chungen LIU, Li ZUO, Xiaofei ZHANG. Minimal periodic solutions of first-order convex Hamiltonian systems with anisotropic growth[J]. Front. Math. China, 2018, 13(5): 1063-1073.
[4] Chungen LIU, Benxing ZHOU. Minimal P-symmetric period problem of first-order autonomous Hamiltonian systems[J]. Front. Math. China, 2017, 12(3): 641-654.
[5] Xiumei XING,Lei JIAO. Boundedness of semilinear Duffing equations with singularity[J]. Front. Math. China, 2014, 9(6): 1427-1452.
[6] Mingjing ZHANG. Theta-lifting and geometric quantization for GL(n, ?)[J]. Front Math Chin, 2012, 7(4): 785-793.
[7] Linping PENG. Quadratic perturbations of a quadratic reversible center of genus one[J]. Front Math Chin, 2011, 6(5): 911-930.
[8] Fulin CHEN, Shaobin TAN. Twisted fermionic and bosonic representations for a class of BC-graded Lie algebras[J]. Front Math Chin, 2011, 6(4): 607-628.
[9] GHOUSSOUB Nassif. Hamiltonian systems as selfdual equations[J]. Front. Math. China, 2008, 3(2): 167-193.
[10] BERTI Massimiliano, BOLLE Philippe. Cantor families of periodic solutions for completely resonant wave equations[J]. Front. Math. China, 2008, 3(2): 151-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed