Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (5) : 855-866    https://doi.org/10.1007/s11464-019-0787-3
RESEARCH ARTICLE
Radon transforms on Siegel-type nilpotent Lie groups
Xingya FAN1,2, Jianxun HE2(), Jinsen XIAO3, Wenjun YUAN2
1. School of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China
2. School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China
3. School of Sciences, Guangdong University of Petrochemical Technology, Maoming 525000, China
 Download: PDF(280 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let N:=Hn×n be the Siegel-type nilpotent group, which can be identified as the Shilov boundary of Siegel domain of type II, where Hn denotes the set of all n×n Hermitian matrices. In this article, we use singular convolution operators to define Radon transform on N and obtain the inversion formulas of Radon transforms. Moveover, we show that Radon transform on N is a unitary operator from Sobolev space Wn;2 into L2(N):

Keywords Siegel domain      Siegel-type nilpotent group      Fourier transform      Radon transform     
Corresponding Author(s): Jianxun HE   
Issue Date: 22 November 2019
 Cite this article:   
Xingya FAN,Jianxun HE,Jinsen XIAO, et al. Radon transforms on Siegel-type nilpotent Lie groups[J]. Front. Math. China, 2019, 14(5): 855-866.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0787-3
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I5/855
1 V Bargmann. On a Hilbert space of analytic functions and an associated integral transform. Comm Pure Appl Math, 1961, 14: 187–214
https://doi.org/10.1002/cpa.3160140303
2 V Bargmann. On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory. Comm Pure Appl Math, 1967, 20: 1–101
https://doi.org/10.1002/cpa.3160200102
3 E Carlton. A Plancherel formula for idyllic nilpotent Lie groups. Trans Amer Math Soc, 1976, 224: 1–42
https://doi.org/10.2307/1997413
4 E Damek, A Hulanicki, D Müller, M M Peloso. Pluriharmonic H2 functions on symmetric irreducible Siegel domains. Geom Funct Anal, 2000, 10: 1090–1117
https://doi.org/10.1007/PL00001648
5 A Dooley, G K Zhang. Algebras of invariant functions on the Shilov boundaries of Siegel domains. Proc Amer Math Soc, 1998, 126: 3693–3699
https://doi.org/10.1090/S0002-9939-98-05051-5
6 J Faraut, A Korányi. Analysis on Symmetric Cones. Oxford: Oxford Univ Press, 1994
7 R Felix. Radon-transformation auf nilpotenten Lie-gruppen. Invent Math, 1993, 112: 413–443
https://doi.org/10.1007/BF01232441
8 D Geller, E M Stein. Estimates convolution operators on the Heisenberg group. Bull Amer Math Soc (N S), 1984, 267: 99–103
https://doi.org/10.1007/BF01458467
9 J X He, H P Liu. Inversion of the Radon transform associated with the classical domain of type one. Internat J Math, 2005, 16: 875–887
https://doi.org/10.1142/S0129167X05003120
10 J X He, H P Liu. Admissible wavelets and inverse Radon transform associated with the affine homogeneous Siegel domains of type II. Comm Anal Geom, 2007, 15: 1–28
https://doi.org/10.4310/CAG.2007.v15.n1.a1
11 J X He, H P Liu. Wavelet transform and Radon transform on the quaternion Heisenberg group. Acta Math Sin (Engl Ser), 2014, 30: 619–636
https://doi.org/10.1007/s10114-014-2361-y
12 S Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces. New York-London: Academic Press, 1978
13 S Helgason. Integral Geometry and Radon Transforms. New York: Springer, 2011
https://doi.org/10.1007/978-1-4419-6055-9
14 R Howe. On the role of the Heisenberg group in harmonic analysis. Bull Amer Math Soc (N S), 1980, 3: 821–843
https://doi.org/10.1090/S0273-0979-1980-14825-9
15 L K Hua. Harmonic Analysis of Functions of Several Complex Variables on the Classical Domains. Providence: Amer Math Soc, 1963
https://doi.org/10.1090/mmono/006
16 A Korányi, A Wolf. Realization of Hermitian symmetric spaces as generalized halfplanes. Ann of Math, 1965, 81(2): 265–288
https://doi.org/10.2307/1970616
17 C Moore, A Wolf. Square integrable representations of nilpotent groups. Trans Amer Math Soc, 1973, 185: 445–462
https://doi.org/10.2307/1996450
18 R Ogden, S Vági. Harmonic analysis of a nilpotent group and function theory of Siegel domains of type II. Adv Math, 1979, 33: 31–92
https://doi.org/10.1016/S0001-8708(79)80009-2
19 B Ørsted, G K Zhang. Weyl quantization and tensor products of Fock and Bergman spaces. Indiana Univ Math J, 1994, 43: 551–583
https://doi.org/10.1512/iumj.1994.43.43023
20 J Peetre. The Weyl transform and Laguerre polynomials. Matematiche (Catania), 1972, 27: 301–323
21 L Z Peng, G K Zhang. Radon transform on H-type and Siegel-type nilpotent groups. Internat J Math, 2007, 18: 1061–1070
https://doi.org/10.1142/S0129167X07004412
22 F Ricci, E M Stein. Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds. J Funct Anal, 1989, 86: 360–389
https://doi.org/10.1016/0022-1236(89)90057-8
23 H Rossi, M Vergne. Group representations on Hilbert spaces defined in terms of ∂‾b-cohomology on the Shilov boundary of a Siegel domain. Pacific J Math, 1976, 65: 193–207
https://doi.org/10.2140/pjm.1976.65.193
24 B Rubin. The Radon transform on the Heisenberg group and the transversal Radon transform. J Funct Anal, 2012, 262: 234–272
https://doi.org/10.1016/j.jfa.2011.09.011
25 I Satake. Algebraic Structures of Symmetric Domains. Princeton: Princeton Univ Press, 1980
https://doi.org/10.1515/9781400856800
26 B Shabat. Introduction to Complex Analysis, Part II: Functions of Several Variables. Providence: Amer Math Soc, 1992
https://doi.org/10.1090/mmono/110
27 R Strichartz. Lpharmonic analysis and Radon transforms on the Heisenberg group. J Funct Anal, 1991, 96: 350–406
https://doi.org/10.1016/0022-1236(91)90066-E
28 A Wolf. Harmonic Analysis on Commutative Spaces. Providence: Amer Math Soc, 2007
https://doi.org/10.1090/surv/142
29 A Wolf. Infinite dimensional multiplicity free spaces III: matrix coefficients and regular functions. Math Ann, 2011, 349: 263{299
https://doi.org/10.1007/s00208-010-0525-3
30 G K Zhang. Radon transform on symmetric matrix domains. Trans Amer Math Soc, 2009, 361: 1351–1369
https://doi.org/10.1090/S0002-9947-08-04658-8
[1] Feng LIU, Qingying XUE, K^oz^o YABUTA. Convergence of truncated rough singular integrals supported by subvarieties on Triebel-Lizorkin spaces[J]. Front. Math. China, 2019, 14(3): 591-604.
[2] Yanping CHEN, Liwei WANG. L2( n) boundedness for Calderón commutator with rough variable kernel[J]. Front. Math. China, 2018, 13(5): 1013-1031.
[3] Kun FAN, Rongming WANG. Valuation of correlation options under a stochastic interest rate model with regime switching[J]. Front. Math. China, 2017, 12(5): 1113-1130.
[4] Xiao YU,Shanzhen LU. Boundedness for a class of fractional integrals with a rough kernel related to block spaces[J]. Front. Math. China, 2016, 11(1): 173-187.
[5] Bolin MA, Huoxiong WU, Xiating ZHAO. Rough Marcinkiewicz integrals along certain smooth curves[J]. Front Math Chin, 2012, 7(5): 857-872.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed