Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (3) : 591-604    https://doi.org/10.1007/s11464-019-0765-9
RESEARCH ARTICLE
Convergence of truncated rough singular integrals supported by subvarieties on Triebel-Lizorkin spaces
Feng LIU1, Qingying XUE2(), K^oz^o YABUTA3
1. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
2. School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China
3. Research Center for Mathematical Sciences, Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan
 Download: PDF(429 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let be a function of homogeneous of degree zero and satisfy the cancellation condition on the unit sphere. Suppose that h is a radial function. Let Th,Ω,p be the classical singular Radon transform, and let Th,Ω,pε be its truncated operator with rough kernels associated to polynomial mapping p which is defined by Th,Ω,pεf(x)=||y|εf(xp(y))h(|y|)Ω(y)|y|ndy|. In this paper, we show that for any α(,) and (p,q) satisfying certain index condition, the operator Th,Ω,pε enjoys the following convergence properties limε0Th,Ω,pεfTh,Ω,pfF ˙αp,q(d)=0 and limε0Th,Ω,pεfTh,Ω,pfB ˙αp,q(d)=0 provided that ΩL(log+L)β(Sn1) for some β(0,1] or ΩH1(Sn1), or Ω(1qBq(0,0)(Sn1)).

Keywords Singular Radon transform      truncated singular integral      rough kernel      convergence     
Issue Date: 10 July 2019
 Cite this article:   
Feng LIU,Qingying XUE,K^oz^o YABUTA. Convergence of truncated rough singular integrals supported by subvarieties on Triebel-Lizorkin spaces[J]. Front. Math. China, 2019, 14(3): 591-604.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0765-9
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I3/591
1 H Al-Qassem, Y Pan. On certain estimates for Marcinkiewicz integrals and extrapolation. Collect Math, 2009, 60: 123–145
https://doi.org/10.1007/BF03191206
2 A Al-Salman, Y Pan. Singular integrals with rough kernels in Llog⁡L(Sn−1). J Lond Math Soc, 2002, 66: 153–174
https://doi.org/10.1112/S0024610702003241
3 A Al-Salman, Y Pan. Singular integrals with rough kernels. Canad Math Bull, 2004, 47: 3–11
https://doi.org/10.4153/CMB-2004-001-8
4 Y Chen, Y Ding, H Liu. Rough singular integrals supported on submanifolds. J Math Anal Appl, 2010, 368: 677–691
https://doi.org/10.1016/j.jmaa.2010.02.021
5 L Colzani. Hardy Spaces on Spheres. Ph D Thesis. Washington Univ, St Louis, 1982
6 D Fan, Y Pan. Singular integral operators with rough kernels supported by subvarieties. Amer J Math, 1997, 119: 799–839
https://doi.org/10.1353/ajm.1997.0024
7 M Frazier, B Jawerth, G Weiss. Littlewood-Paley Theory and the Study of Function Spaces. CBMS Reg Conf Ser Math, No 79. Providence: Amer Math Soc, 1991
https://doi.org/10.1090/cbms/079
8 L Grafakos, A Stefanov. Lp bounds for singular integrals and maximal singular integrals with rough kernels. Indiana Univ Math J, 1998, 47: 455–469
https://doi.org/10.1512/iumj.1998.47.1521
9 F Liu, H Wu. Rough singular integrals associated to compound mappings on Triebel-Lizorkin spaces and Besov spaces. Taiwanese J Math, 2014, 18: 127–146
https://doi.org/10.11650/tjm.18.2014.3147
10 F Liu, H Wu, D Zhang. Boundedness of certain singular integrals along surfaces on Triebel-Lizorkin spaces. Forum Math, 2015, 27: 3439–3460
https://doi.org/10.1515/forum-2014-0002
11 F Liu, Q Xue, K Yabuta. Rough maximal singular integral and maximal operators supported by subvarieties on Triebel-Lizorkin spaces. Nonlinear Anal, 2018, 171: 41–72
https://doi.org/10.1016/j.na.2018.01.014
12 S Sato. Estimates for singular integrals and extrapolation. Studia Math, 2009, 192: 219–233
https://doi.org/10.4064/sm192-3-2
13 E M Stein. Note on the class Llog⁡L. Studia Math, 1969, 32: 305–310
https://doi.org/10.4064/sm-32-3-305-310
14 E M Stein. Problems in harmonic analysis related to curvature and oscillatory integrals. In: Proceedings of the International Congress of Mathematicians, 1986, Vol 1. Providence: Amer Math Soc, 1987, 196–221
15 E M Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993
https://doi.org/10.1515/9781400883929
16 H Triebel. Theory of Function Spaces. Monogr Math, Vol 78. Basel: Birkhäser, 1983
https://doi.org/10.1007/978-3-0346-0416-1
17 K Yabuta. Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces. J Inequal Appl, 2015, 107: 1–26
https://doi.org/10.1186/s13660-015-0630-7
[1] Laith HAWAWSHEH, Ahmad AL-SALMAN. Lp Estimates of certain rough parametric Marcinkiewicz functions[J]. Front. Math. China, 2019, 14(5): 867-879.
[2] Yongqiang SUO, Jin TAO, Wei ZHANG. Moderate deviation and central limit theorem for stochastic differential delay equations with polynomial growth[J]. Front. Math. China, 2018, 13(4): 913-933.
[3] Yongguang HE, Huiyun LI, Xinwei LIU. Relaxed inertial proximal Peaceman-Rachford splitting method for separable convex programming[J]. Front. Math. China, 2018, 13(3): 555-578.
[4] Yifen KE, Changfeng MA, Zhiru REN. A new alternating positive semidefinite splitting preconditioner for saddle point problems from time-harmonic eddy current models[J]. Front. Math. China, 2018, 13(2): 313-340.
[5] Liang WEI, Zhiping LI. Fourier-Chebyshev spectral method for cavitation computation in nonlinear elasticity[J]. Front. Math. China, 2018, 13(1): 203-226.
[6] Yan LI. Deformation of conic negative Kähler-Einstein manifolds[J]. Front. Math. China, 2017, 12(3): 597-606.
[7] Yutao MA,Yingzhe WANG. Algebraic convergence of diffusion processes on Rn with radial diffusion and drift coefficients[J]. Front. Math. China, 2015, 10(4): 965-984.
[8] Guangjun SHEN,Xiuwei YIN,Dongjin ZHU. Weak convergence to Rosenblatt sheet[J]. Front. Math. China, 2015, 10(4): 985-1004.
[9] Xinghui WANG,Shuhe HU. Conditional mean convergence theorems of conditionally dependent random variables under conditions of integrability[J]. Front. Math. China, 2015, 10(3): 681-696.
[10] Akanksha,G. S. SRIVASTAVA. Spaces of vector-valued Dirichlet series in a half plane[J]. Front. Math. China, 2014, 9(6): 1239-1252.
[11] Lijuan ZHAO,Wenyu SUN,Raimundo J. B. de SAMPAIO. Nonmonotone adaptive trust region method based on simple conic model for unconstrained optimization[J]. Front. Math. China, 2014, 9(5): 1211-1238.
[12] Cheng-yi ZHANG,Fengmin XU,Zongben XU,Jicheng LI. General H-matrices and their Schur complements[J]. Front. Math. China, 2014, 9(5): 1141-1168.
[13] Yingqiu LI,Quansheng LIU,Zhiqiang GAO,Hesong WANG. Asymptotic properties of supercritical branching processes in random environments[J]. Front. Math. China, 2014, 9(4): 737-751.
[14] Shanzhen LU. Conjectures and problems on Bochner-Riesz means[J]. Front Math Chin, 2013, 8(6): 1237-1251.
[15] Yuelong TANG, Yanping CHEN. Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems[J]. Front Math Chin, 2013, 8(2): 443-464.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed