Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (6) : 1189-1200    https://doi.org/10.1007/s11464-020-0881-6
RESEARCH ARTICLE
Existence and multiplicity results for nonlinear Schrödinger-Poisson equation with general potential
Yuan SHAN()
School of Statistics and Mathematics, Nanjing Audit University, Nanjing 210029, China
 Download: PDF(265 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper is concerned with the Schrödinger-Poisson equationΔu+V(x)u+φ(x)u=f(x,u),x3,Δφ=u2,lim|x|+φ(x)=0.

Under certain hypotheses on V and a general spectral assumption, the existence and multiplicity of solutions are obtained via variational methods.

Keywords Schrdinger-Poisson equation      Morse index      variational method     
Corresponding Author(s): Yuan SHAN   
Issue Date: 05 February 2021
 Cite this article:   
Yuan SHAN. Existence and multiplicity results for nonlinear Schrödinger-Poisson equation with general potential[J]. Front. Math. China, 2020, 15(6): 1189-1200.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0881-6
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I6/1189
1 A Azzollini, A Pomponio. Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J Math Anal Appl, 2008, 345: 90–108
https://doi.org/10.1016/j.jmaa.2008.03.057
2 T Bartsch, A Pankov, Z Q Wang. Nonlinear Schrödinger equations with steep potential well. Commun Contemp Math, 2001, 3: 549–569
https://doi.org/10.1142/S0219199701000494
3 V Benci, D Fortunato. An eigenvalue problem for the Schrödinger-Maxwell equations. Topol Methods Nonlinear Anal, 1998, 11: 283–293
https://doi.org/10.12775/TMNA.1998.019
4 S Chen, C Wang. Existence of multiple nontrivial solutions for a Schrödinger-Poisson system. J Math Anal Appl, 2014, 411: 787–793
https://doi.org/10.1016/j.jmaa.2013.10.008
5 C Conley, E Zehnder. Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Comm Pure Appl Math, 1984, 37: 207–253
https://doi.org/10.1002/cpa.3160370204
6 T D'Aprile, D Mugnai. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc Roy Soc Edinburgh Sect A, 2004, 134: 893–906
https://doi.org/10.1017/S030821050000353X
7 Y Dong. Index theory, nontrivial solutions and asymptotically linear second order Hamiltonian systems. J Differential Equations, 2005, 214: 233–255
https://doi.org/10.1016/j.jde.2004.10.030
8 Y Dong. Index theory for linear selfadjoint operator equations and nontrivial solutions for asymptotically linear operator equations. Calc Var Partial Differential Equations, 2010, 38: 75–109
https://doi.org/10.1007/s00526-009-0279-5
9 I Ekeland. Convexity Methods in Hamiltonian Mechanics. Berlin: Springer, 1990
https://doi.org/10.1007/978-3-642-74331-3
10 Y Jiang, H Zhou. Schrödinger-Poisson system with steep potential well. J Differential Equations, 2011, 251: 582–608
https://doi.org/10.1016/j.jde.2011.05.006
11 Z L Liu, S Guo. On ground state solutions for the Schrödinger-Poisson equations with critical growth. J Math Anal Appl, 2014, 412: 435–448
https://doi.org/10.1016/j.jmaa.2013.10.066
12 Z L Liu, F A Heerden, Z Q Wang. Nodal type bounded states of Schrödinger equations via invariant set and minimax methods. J Differential Equations, 2005, 214: 358–390
https://doi.org/10.1016/j.jde.2004.08.023
13 Z L Liu, J Su, T Weth. Compactness results for Schrödinger equations with asymptotically linear terms. J Differential Equations, 2006, 231: 201–212
https://doi.org/10.1016/j.jde.2006.05.007
14 Z L Liu, Z Q Wang, J Zhang. Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system. Ann Mat Pura Appl, 2016, 195: 775–794
https://doi.org/10.1007/s10231-015-0489-8
15 Y Long. Index Theory for Symplectic Paths with Applications. Progr Math, Vol 207. Basel: Birkhauser, 2002
https://doi.org/10.1007/978-3-0348-8175-3
16 P H Rabinowitz. Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg Conf Ser Math, No 65. Providence: Amer Math Soc, 1986
https://doi.org/10.1090/cbms/065
17 M Reed, B Simon. Methods of Modern Mathematical Physics IV: Analysis of Operators. New York: Academic Press, 1978
18 D Ruiz. The Schrödinger-Poisson equation under the effect of nonlinear local term. J Funct Anal, 2006, 237: 655–674
https://doi.org/10.1016/j.jfa.2006.04.005
19 Y Shan. Morse index and multiple solutions for the asymptotically linear Schrödinger type equation. Nonlinear Anal, 2013, 89: 170–178
https://doi.org/10.1016/j.na.2013.05.014
20 B Simon. Schrödinger semigroups. Bull Amer Math Soc, 1982, 7: 447–526
https://doi.org/10.1090/S0273-0979-1982-15041-8
21 C A Stuart, H S Zhou. Global branch of solutions for nonlinear Schrödinger equations with deepening potential well. Proc Lond Math Soc, 2006, 92: 655–681
https://doi.org/10.1017/S0024611505015637
22 J Sun. Infinitely many solutions for a class of sublinear Schrödinger-Maxwell equations. J Math Anal Appl, 2012, 390: 514–522
https://doi.org/10.1016/j.jmaa.2012.01.057
23 J Sun, H Chen, J J Nieto. On ground state solutions for some non-autonomous Schrödinger-Poisson systems. J Differential Equations, 2012, 252: 3365–3380
https://doi.org/10.1016/j.jde.2011.12.007
24 Z Wang, H S Zhou. Positive solutions for nonlinear Schrödinger equations with deepening potential well. J Eur Math Soc (JEMS), 2009, 11: 545–573
https://doi.org/10.4171/JEMS/160
25 Q Zhang, B Xu. Multiple solutions for Schrödinger-Poisson systems with indefinite potential and combined nonlinearity. J Math Anal Appl, 2017, 455: 1668–1687
https://doi.org/10.1016/j.jmaa.2017.06.058
26 L Zhao, F Zhao. On the existence of solutions for the Schrödinger-Poisson equations. J Math Anal Appl, 2008, 346: 155–169
https://doi.org/10.1016/j.jmaa.2008.04.053
27 W Zou. Sign-changing saddle point. J Funct Anal, 2005, 219: 433–468
https://doi.org/10.1016/j.jfa.2004.10.002
[1] Wenjing BI, Chunlei TANG. Ground state solutions for a non-autonomous nonlinear Schrödinger-KdV system[J]. Front. Math. China, 2020, 15(5): 851-866.
[2] Chungen LIU, Benxing ZHOU. Minimal P-symmetric period problem of first-order autonomous Hamiltonian systems[J]. Front. Math. China, 2017, 12(3): 641-654.
[3] LONG Yiming. Collection of problems proposed at International Conference on Variational Methods[J]. Front. Math. China, 2008, 3(2): 259-273.
[4] BERTI Massimiliano, BOLLE Philippe. Cantor families of periodic solutions for completely resonant wave equations[J]. Front. Math. China, 2008, 3(2): 151-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed