Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (3) : 647-687    https://doi.org/10.1007/s11464-021-0888-7
RESEARCH ARTICLE
Generalized P(N)-graded Lie superalgebras
Jin CHENG1, Yun GAO2()
1. School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China
2. Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
 Download: PDF(412 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We generalize the P(N)-graded Lie superalgebras of Martinez-Zelmanov. This generalization is not so restrictive but suffcient enough so that we are able to have a classification for this generalized P(N)-graded Lie superalgebras. Our result is that the generalized P(N)-graded Lie super-algebra L is centrally isogenous to a matrix Lie superalgebra coordinated by an associative superalgebra with a super-involution. Moreover, L is P(N)-graded if and only if the coordinate algebra R is commutative and the super-involution is trivial. This recovers Martinez-Zelmanov's theorem for type P(N). We also obtain a generalization of Kac's coordinatization via Tits-Kantor-Koecher construction. Actually, the motivation of this generalization comes from the Fermionic-Bosonic module construction.

Keywords Root system graded Lie superalgebras      associative superalgebra      quantum tori      representations     
Corresponding Author(s): Yun GAO   
Issue Date: 14 July 2021
 Cite this article:   
Jin CHENG,Yun GAO. Generalized P(N)-graded Lie superalgebras[J]. Front. Math. China, 2021, 16(3): 647-687.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0888-7
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I3/647
1 G Benkart, A Elduque. Lie superalgebras graded by the root system A(m, n). J Lie Theory, 2003, 13(2): 387–400
2 G Benkart, A Elduque. Lie superalgebras graded by the root system B(m, n). Selecta Math (N S), 2003, 9: 313–360
https://doi.org/10.1007/s00029-003-0335-5
3 G Benkart, A Elduque, C Martinez. A(n, n)-graded Lie superalgebras. J Reine Angew Math, 2004, 573: 139–156
https://doi.org/10.1515/crll.2004.057
4 G Benkart, E Zelmanov. Lie algebras graded by finite root systems and intersection matrix algebras. Invent Math, 1996, 126(1): 1–45
https://doi.org/10.1007/s002220050087
5 S Berman, Y Gao, Y Krylyuk. Quantum tori and the structure of elliptic quasi-simple Lie algebras. J Funct Anal, 1996, 135(2): 339–389
https://doi.org/10.1006/jfan.1996.0013
6 S Berman, R V Moody . Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy. Invent Math, 1992, 108(2): 323–347
https://doi.org/10.1007/BF02100608
7 H J Chen, Y Gao . BCN-graded Lie algebras arising from fermionic representations. J Algebra, 2007, 308(2): 545–566
8 J Cheng, Z T Zeng . Irreducible Wakimoto-like Modules for the Lie superalgebra D(2,1;α). Acta Math Sin (Engl Ser), 2018, 40(34): 1578–1588
https://doi.org/10.1007/s10114-018-7265-9
9 A J Feingold, I B Frenkel. Classical affine algebras. Adv Math, 1985, 56(2): 117–172
https://doi.org/10.1016/0001-8708(85)90027-1
10 I B. Frenkel Spinor representations of affine Lie algebras. Proc Natl Acad Sci USA, 1980, 77(11): 6303–6306
https://doi.org/10.1073/pnas.77.11.6303
11 Y Gao . Fermionic and bosonic representations of the extended affine Lie algebragl glN(ℂq) ˜. Canad Math Bull, 2002, 45(4): 623–633
12 V G Kac. Lie superalgebras. Adv Math, 1977, 26(1): 8–96
https://doi.org/10.1016/0001-8708(77)90017-2
13 V G Kac. Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras. Comm Algebra, 1977, 5(13): 1375–1400
https://doi.org/10.1080/00927877708822224
14 V G Kac, D H Peterson . Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc Natl Acad Sci USA, 1981, 78(6): 3308–3312
https://doi.org/10.1073/pnas.78.6.3308
15 M Lau. Bosonic and fermionic representations of Lie algebra central extensions. Adv Math, 2005, 194(2): 225–245
https://doi.org/10.1016/j.aim.2004.06.005
16 Yu I Manin. Topics in Noncommutative Geometry. M B Porter Lecture Ser. Princeton: Princeton Univ Press, 1991
17 C Martinez. Simplicity of Jordan superalgebras and relations with Lie structures. Irish Math Soc Bull, 2003, 50: 97–116
18 C Martinez, I Shestakov, E Zelmanov. Jordan bimodules over the superalgebras P(n) and Q(n). Trans Amer Math Soc, 2010, 362(4): 2037–2051
https://doi.org/10.1090/S0002-9947-09-04997-6
19 C Martinez, E Zelmanov. Lie superalgebras graded by P(n) and Q(n). Proc Natl Acad Sci USA, 2003, 100(14): 8130–8137
https://doi.org/10.1073/pnas.0932706100
20 E Neher. An introduction to universal central extensions of Lie superalgebras. In: Bahturin Yu, ed. Groups, Rings, Lie and Hopf Algebras. Math Appl, Vol 555. Berlin: Springer, 2003, 141–166
https://doi.org/10.1007/978-1-4613-0235-3_10
[1] Xiaomin TANG, Lijuan LIU, Jinli XU. Lie bialgebra structures on derivation Lie algebra over quantum tori[J]. Front. Math. China, 2017, 12(4): 949-965.
[2] Jin CHENG. Generalized B(m, n), C(n),D(m, n)-graded Lie superalgebras arising from fermionic-bosonic representations[J]. Front. Math. China, 2016, 11(6): 1451-1470.
[3] Claus Michael RINGEL. Representation theory of Dynkin quivers. Three contributions[J]. Front. Math. China, 2016, 11(4): 765-814.
[4] Mingjing ZHANG. Theta-lifting and geometric quantization for GL(n, ?)[J]. Front Math Chin, 2012, 7(4): 785-793.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed