|
|
|
Boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents |
Xia YU, Zongguang LIU( ) |
| School of Sciences, China University of Mining and Technology, Beijing 100083, China |
|
| 1 |
A Almeida, D Drihem. Maximal, potential and singular type operators on Herz spaces with variable exponents. J Math Anal Appl, 2012, 394(2): 781–795
https://doi.org/10.1016/j.jmaa.2012.04.043
|
| 2 |
C Capone, D Cruz-Uribe, A Fiorenza. The fractional maximal operator and fractional integrals on variable Lp spaces. Rev Mat Iberoam, 2007, 23(23): 743–770
https://doi.org/10.4171/RMI/511
|
| 3 |
D Cruz-Uribe, A Fiorenza, J M Martell, C Pérez. The boundedness of classical operators on variable Lp spaces. Ann Acad Sci Fenn Math, 2006, 31(1): 239–264
|
| 4 |
D Cruz-Uribe, A Fiorenza, C Neugebauer. The maximal function on variable Lp spaces. Ann Acad Sci Fenn Math, 2003, 28(1): 223–238
|
| 5 |
L Diening, P Harjulehto, P Hästö, M Růžička. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math, Vol 2017. Berlin: Springer-Verlag, 2011
https://doi.org/10.1007/978-3-642-18363-8
|
| 6 |
C S Herz. Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms. J Math Mech, 1968, 18: 283–323
https://doi.org/10.1512/iumj.1969.18.18024
|
| 7 |
M Izuki. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent. Glas Mat, 2010, 45(2): 475–503
https://doi.org/10.3336/gm.45.2.14
|
| 8 |
M Izuki. Boundedness of commutators on Herz spaces with variable exponent. Rend Circ Mat Palermo, 2010, 59(2): 199–213
https://doi.org/10.1007/s12215-010-0015-1
|
| 9 |
M Izuki. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal Math, 2010, 36(1): 33–50
https://doi.org/10.1007/s10476-010-0102-8
|
| 10 |
M Izuki. Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent. Rend Circ Mat Palermo, 2010, 59(3): 461–472
https://doi.org/10.1007/s12215-010-0034-y
|
| 11 |
M Izuki, T Noi. Boundedness of some integral operators and commutators on generalized Herz spaces with variable exponents. OCAMI Preprint Ser, 2011, 11–15
|
| 12 |
O Kováčik, J Rákosník. On spaces Lp(x) and Wk,p(x). Czechoslovak Math J, 1991, 41: 592–618
https://doi.org/10.21136/CMJ.1991.102493
|
| 13 |
X W Li, D C Yang. Boundedness of some sublinear operators on Herz spaces. Illinois J Math, 1996, 40(3): 484–501
https://doi.org/10.1215/ijm/1255986021
|
| 14 |
S Z Lu, D C Yang, G Hu. Herz Type Spaces and Their Applications.Beijing: Science Press, 2008
|
| 15 |
W Orlicz. On the summability of bounded sequences by continuous methods. Bull Acad Polon Sci Ser Sci Math Astr Phys, 1958, 6: 549{556
|
| 16 |
F Soria, G Weiss. A remark on singular integrals and power weights. Indiana Univ Math J, 1994, 43(1): 187–204
https://doi.org/10.1512/iumj.1994.43.43009
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|