|
|
|
Oscillation and variation inequalities for singular integrals and commutators on weighted Morrey spaces |
Jing ZHANG1,2,Huoxiong WU1,*( ) |
1. School of Mathematical Sciences, Xiamen University, Xiamen 361005, China 2. School of Mathematics and Statistics, Yili Normal College, Yining 835000, China |
|
|
|
|
Abstract This paper is devoted to investigating the bounded behaviors of the oscillation and variation operators for Calderón-Zygmund singular integrals and the corresponding commutators on the weighted Morrey spaces. We establish several criterions of boundedness, which are applied to obtain the corresponding bounds for the oscillation and variation operators of Hilbert transform, Hermitian Riesz transform and their commutators with BMO functions, or Lipschitz functions on weighted Morrey spaces.
|
| Keywords
Oscillation
variation
singular integrals
commutators
Morrey spaces
weights
|
|
Corresponding Author(s):
Huoxiong WU
|
|
Issue Date: 18 April 2016
|
|
| 1 |
Adams D R. A note on Riesz potentials. Duke Math J, 1975, 42: 765–778
https://doi.org/10.1215/S0012-7094-75-04265-9
|
| 2 |
Akcoglu M, Jones R L, Schwartz P. Variation in probability, ergodic theory and analysis. Illinois J Math, 1998, 42(1): 154–177
|
| 3 |
Bougain J. Pointwise ergodic theorem for arithmetic sets. Publ Math Inst Hautes Études Sci, 1989, 69: 5–45
https://doi.org/10.1007/BF02698838
|
| 4 |
Campbell J T, Jones R L, Reinhold K, Wierdl M. Oscillation and variation for Hilbert transform. Duke Math J, 2000, 105: 59–83<?Pub Caret?>
https://doi.org/10.1215/S0012-7094-00-10513-3
|
| 5 |
Campbell J T, Jones R L, Reinhold K, Wierdl M. Oscillation and variation for singular integrals in higher dimension. Trans Amer Math Soc, 2003, 355: 2115–2137
https://doi.org/10.1090/S0002-9947-02-03189-6
|
| 6 |
Chen S, Wu H, Xue Q. A note on multilinear Muckenhoupt classes for multiple weights. Studia Math, 2014, 223(1): 1–18
https://doi.org/10.4064/sm223-1-1
|
| 7 |
Chiarenza F, Frasca M. Morrey spaces and Hardy-Littlewood maximal function. Rend Mat Appl, 1987, 7: 273–279
|
| 8 |
Crescimbeni R, Martin-Reyes F J, Torre A L, Torrea J L. The ρ-variation of the Hermitian Riesz transform. Acta Math Sin (Engl Ser), 2010, 26: 1827–1838
https://doi.org/10.1007/s10114-010-9122-3
|
| 9 |
Garćıa-Cuerva J. Weighted Hp space. Dissertations Math, 1979, 162: 1–63
|
| 10 |
Gillespie T A, Torrea J L. Dimension free estimates for the oscillation of Riesz transforms. Israel J Math, 2004, 141: 125–144
https://doi.org/10.1007/BF02772215
|
| 11 |
Grafakos L. Classical and Modern Fourier Analysis. Upper Saddle River: Pearson Education, Inc, 2004
|
| 12 |
Jones R L. Ergodic theory and connections with analysis and probability. New York J Math, 1997, 3A: 31–67
|
| 13 |
Jones R L. Variation inequalities for singular integrals and related operators. Contemp Math, 2006, 411: 89–121
https://doi.org/10.1090/conm/411/07750
|
| 14 |
Jones R L, Reinhold K. Oscillation and variation inequalities for convolution powers. Ergodic Theory Dynam Systems, 2001, 21: 1809–1829
https://doi.org/10.1017/S0143385701001869
|
| 15 |
Komori Y, Shirai S. Weighted Morrey spaces and a singular integral operator. Math Nachr, 2009, 282(2): 219–231
https://doi.org/10.1002/mana.200610733
|
| 16 |
Liu F, Wu H. A criterion on osillation and variation for the commutators of singular integral operators. Forum Math, 2015, 27: 77–97
https://doi.org/10.1515/forum-2012-0019
|
| 17 |
Morrey C B. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc, 1938, 43: 126–166
https://doi.org/10.1090/S0002-9947-1938-1501936-8
|
| 18 |
Muckenhoupt B, Wheeden R. Weighted bounded mean oscillation and the Hilbert transform. Studia Math, 1976, 54: 221–237
|
| 19 |
Stempark K, Torrea J L. Poisson integrals and Riesz transforms for Hermite function expansions with weights. J Funct Anal, 2003, 202: 443–472
https://doi.org/10.1016/S0022-1236(03)00083-1
|
| 20 |
Thangavelu S. Lectures on Hermite and Laguerre Expansions. Math Notes 42. Princeton: Princeton Univ Press, 1993
|
| 21 |
Torchinsky A. Real Variable Methods in Harmonic Analysis. New York: Academic Press, 1986
|
| 22 |
Zhang J, Wu H. Oscillation and variation inequalities for the commutators of singular integrals with Lipschitz functions. J Inequal Appl, 2015, 214, DOI: 10.1186/s13660-015-0737-x
https://doi.org/10.1186/s13660-015-0737-x
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|