Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (2) : 423-447    https://doi.org/10.1007/s11464-015-0462-2
RESEARCH ARTICLE
Oscillation and variation inequalities for singular integrals and commutators on weighted Morrey spaces
Jing ZHANG1,2,Huoxiong WU1,*()
1. School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
2. School of Mathematics and Statistics, Yili Normal College, Yining 835000, China
 Download: PDF(219 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper is devoted to investigating the bounded behaviors of the oscillation and variation operators for Calderón-Zygmund singular integrals and the corresponding commutators on the weighted Morrey spaces. We establish several criterions of boundedness, which are applied to obtain the corresponding bounds for the oscillation and variation operators of Hilbert transform, Hermitian Riesz transform and their commutators with BMO functions, or Lipschitz functions on weighted Morrey spaces.

Keywords Oscillation      variation      singular integrals      commutators      Morrey spaces      weights     
Corresponding Author(s): Huoxiong WU   
Issue Date: 18 April 2016
 Cite this article:   
Jing ZHANG,Huoxiong WU. Oscillation and variation inequalities for singular integrals and commutators on weighted Morrey spaces[J]. Front. Math. China, 2016, 11(2): 423-447.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0462-2
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I2/423
1 Adams D R. A note on Riesz potentials. Duke Math J, 1975, 42: 765–778
https://doi.org/10.1215/S0012-7094-75-04265-9
2 Akcoglu M, Jones R L, Schwartz P. Variation in probability, ergodic theory and analysis. Illinois J Math, 1998, 42(1): 154–177
3 Bougain J. Pointwise ergodic theorem for arithmetic sets. Publ Math Inst Hautes Études Sci, 1989, 69: 5–45
https://doi.org/10.1007/BF02698838
4 Campbell J T, Jones R L, Reinhold K, Wierdl M. Oscillation and variation for Hilbert transform. Duke Math J, 2000, 105: 59–83<?Pub Caret?>
https://doi.org/10.1215/S0012-7094-00-10513-3
5 Campbell J T, Jones R L, Reinhold K, Wierdl M. Oscillation and variation for singular integrals in higher dimension. Trans Amer Math Soc, 2003, 355: 2115–2137
https://doi.org/10.1090/S0002-9947-02-03189-6
6 Chen S, Wu H, Xue Q. A note on multilinear Muckenhoupt classes for multiple weights. Studia Math, 2014, 223(1): 1–18
https://doi.org/10.4064/sm223-1-1
7 Chiarenza F, Frasca M. Morrey spaces and Hardy-Littlewood maximal function. Rend Mat Appl, 1987, 7: 273–279
8 Crescimbeni R, Martin-Reyes F J, Torre A L, Torrea J L. The ρ-variation of the Hermitian Riesz transform. Acta Math Sin (Engl Ser), 2010, 26: 1827–1838
https://doi.org/10.1007/s10114-010-9122-3
9 Garćıa-Cuerva J. Weighted Hp space. Dissertations Math, 1979, 162: 1–63
10 Gillespie T A, Torrea J L. Dimension free estimates for the oscillation of Riesz transforms. Israel J Math, 2004, 141: 125–144
https://doi.org/10.1007/BF02772215
11 Grafakos L. Classical and Modern Fourier Analysis. Upper Saddle River: Pearson Education, Inc, 2004
12 Jones R L. Ergodic theory and connections with analysis and probability. New York J Math, 1997, 3A: 31–67
13 Jones R L. Variation inequalities for singular integrals and related operators. Contemp Math, 2006, 411: 89–121
https://doi.org/10.1090/conm/411/07750
14 Jones R L, Reinhold K. Oscillation and variation inequalities for convolution powers. Ergodic Theory Dynam Systems, 2001, 21: 1809–1829
https://doi.org/10.1017/S0143385701001869
15 Komori Y, Shirai S. Weighted Morrey spaces and a singular integral operator. Math Nachr, 2009, 282(2): 219–231
https://doi.org/10.1002/mana.200610733
16 Liu F, Wu H. A criterion on osillation and variation for the commutators of singular integral operators. Forum Math, 2015, 27: 77–97
https://doi.org/10.1515/forum-2012-0019
17 Morrey C B. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc, 1938, 43: 126–166
https://doi.org/10.1090/S0002-9947-1938-1501936-8
18 Muckenhoupt B, Wheeden R. Weighted bounded mean oscillation and the Hilbert transform. Studia Math, 1976, 54: 221–237
19 Stempark K, Torrea J L. Poisson integrals and Riesz transforms for Hermite function expansions with weights. J Funct Anal, 2003, 202: 443–472
https://doi.org/10.1016/S0022-1236(03)00083-1
20 Thangavelu S. Lectures on Hermite and Laguerre Expansions. Math Notes 42. Princeton: Princeton Univ Press, 1993
21 Torchinsky A. Real Variable Methods in Harmonic Analysis. New York: Academic Press, 1986
22 Zhang J, Wu H. Oscillation and variation inequalities for the commutators of singular integrals with Lipschitz functions. J Inequal Appl, 2015, 214, DOI: 10.1186/s13660-015-0737-x
https://doi.org/10.1186/s13660-015-0737-x
[1] Yuan SHAN. Existence and multiplicity results for nonlinear Schrödinger-Poisson equation with general potential[J]. Front. Math. China, 2020, 15(6): 1189-1200.
[2] Wenjing BI, Chunlei TANG. Ground state solutions for a non-autonomous nonlinear Schrödinger-KdV system[J]. Front. Math. China, 2020, 15(5): 851-866.
[3] Qingquan DENG, Djalal Eddine GUEDJIBA. Weighted product Hardy space associated with operators[J]. Front. Math. China, 2020, 15(4): 649-683.
[4] Xiaona CUI, Jing ZHANG. Oscillation and variation for Riesz transform in setting of Bessel operators on H1 and BMO[J]. Front. Math. China, 2020, 15(4): 617-647.
[5] Huaiyu JIAN, Hongbo ZENG. Existence and uniqueness for variational problem from progressive lens design[J]. Front. Math. China, 2020, 15(3): 491-505.
[6] Qiuhong WANG, Yun ZHAO. Variational principle and zero temperature limits of asymptotically (sub)-additive projection pressure[J]. Front. Math. China, 2018, 13(5): 1099-1120.
[7] Xiaoyou LIU. Existence of anti-periodic solutions for hemivariational inequalities[J]. Front. Math. China, 2018, 13(3): 607-618.
[8] Nguyen Minh CHUONG, Nguyen Thi HONG, Ha Duy HUNG. Bounds of weighted multilinear Hardy-Cesàro operators in p-adic functional spaces[J]. Front. Math. China, 2018, 13(1): 1-24.
[9] Wei WANG, Jingshi XU. Multilinear Calderón-Zygmund operators and their commutators with BMO functions in variable exponent Morrey spaces[J]. Front. Math. China, 2017, 12(5): 1235-1246.
[10] Yu PAN, Dayue CHEN, Xiaofeng XUE. Contact process on regular tree with random vertex weights[J]. Front. Math. China, 2017, 12(5): 1163-1181.
[11] Dongxiang CHEN, Shanzhen LU, Suzhen MAO. Multiple weighted estimates for maximal vector-valued commutator of multilinear Calderón-Zygmund singular integrals[J]. Front. Math. China, 2017, 12(3): 531-558.
[12] Wentian KUANG,Yiming LONG. Geometric characterizations for variational minimizing solutions of charged 3-body problems[J]. Front. Math. China, 2016, 11(2): 309-321.
[13] Mu-Fa CHEN,Lingdi WANG,Yuhui ZHANG. Mixed eigenvalues of discrete p-Laplacian[J]. Front. Math. China, 2014, 9(6): 1261-1292.
[14] Yutao MA,Yonghua MAO. New point view of spectral gap in functional spaces for birth-death processes[J]. Front. Math. China, 2014, 9(3): 523-535.
[15] Mu-Fa CHEN, Lingdi WANG, Yuhui ZHANG. Mixed principal eigenvalues in dimension one[J]. Front Math Chin, 2013, 8(2): 317-343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed