|
|
|
Classification on irreducible Whittaker modules over quantum group |
Limeng XIA1, Xiangqian GUO2, Jiao ZHANG3( ) |
1. Institute of Applied System Analysis, Jiangsu University, Zhenjiang 212013, China 2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China 3. Department of Mathematics, Shanghai University, Shanghai 200444, China |
|
|
|
|
Abstract We define the Whittaker modules over the simply-connected quantum group ; where is the weight lattice of Lie algebra : Then we completely classify all those simple ones. Explicitly, a simple Whittaker module over is either a highest weight module, or determined by two parameters and (up to a Hopf automorphism).
|
| Keywords
Quantum group
simple
Whittaker module
Whittaker vector
|
|
Corresponding Author(s):
Jiao ZHANG
|
|
Issue Date: 11 October 2021
|
|
| 1 |
D Adamović, R C Lü, K M Zhao. Whittaker modules for the affine Lie algebra A1(1).Adv Math, 2016, 289: 438–479
|
| 2 |
D Arnal, G Pinzcon. On algebraically irreducible representations of the Lie algebras sl2. J Math Phys, 1974, 15: 350–359
|
| 3 |
G Benkart, M Ondrus. Whittaker modules for generalized Weyl algebras. Represent Theory, 2009, 13: 141–164
https://doi.org/10.1090/S1088-4165-09-00347-1
|
| 4 |
K Christodoulopoulou. Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J Algebra, 2008, 320: 2871–2890
https://doi.org/10.1016/j.jalgebra.2008.06.025
|
| 5 |
X Q Guo, X W Liu. Whittaker modules over generalized Virasoro algebras. Comm Algebra, 2011, 39: 3222–3231
https://doi.org/10.1080/00927872.2010.499119
|
| 6 |
X Q Guo, X W Liu. Whittaker modules over Virasoro-like algebra. J Math Phys, 2011, 52(9): 093504 (9 pp)
https://doi.org/10.1063/1.3641245
|
| 7 |
J T Hartwig, N Yu. Simple Whittaker modules over free bosonic orbifold vertex operator algebras. Proc Amer Math Soc, 2019, 147: 3259–3272
https://doi.org/10.1090/proc/14461
|
| 8 |
J C Jantzen. Lectures on Quantum Groups. Grad Stud Math, Vol 6. Providence: Amer Math Soc, 1996
|
| 9 |
B Kostant. On Whittaker vectors and representation theory. Invent Math, 1978, 48: 101–184
https://doi.org/10.1007/BF01390249
|
| 10 |
L B Li, L M Xia, Y H Zhang. On the centers of quantum groups of An-type. Sci China Math, 2018, 61: 287–294
https://doi.org/10.1007/s11425-017-9119-0
|
| 11 |
D Liu, Y F Pei, L M Xia. Whittaker modules for the super-Virasoro algebras. J Algebra Appl, 2019, 18: 1950211 (13 pp)
https://doi.org/10.1142/S0219498819502116
|
| 12 |
X W Liu, X Q Guo. Whittaker modules over loop Virasoro algebra. Front Math China, 2013, 8(2): 393–410
https://doi.org/10.1007/s11464-012-0205-6
|
| 13 |
M Ondrus. Whittaker modules for Uq(sl2). J Algebra, 2005, 289: 192–213
|
| 14 |
M Ondrus, E Wiesner. Whittaker modules for the Virasoro algebra. J Algebra Appl, 2009, 8: 363-377
https://doi.org/10.1142/S0219498809003370
|
| 15 |
M Ondrus, E Wiesner. Whittaker categories for the Virasoro algebra. Comm Algebra, 2013, 41: 3910–3930
https://doi.org/10.1080/00927872.2012.693557
|
| 16 |
A Sevostyanov. Regular nilpotent elements and quantum groups. Comm Math Phys, 1999, 204: 1–16
https://doi.org/10.1007/s002200050634
|
| 17 |
A Sevostyanov. Quantum deformation of Whittaker modules and the Toda lattice. Duke Math J, 2000, 105: 211–238
https://doi.org/10.1215/S0012-7094-00-10522-4
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|