Uqsl3," /> Uqsl3," /> Uqsl3," />
Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (4) : 1089-1097    https://doi.org/10.1007/s11464-021-0932-7
RESEARCH ARTICLE
Classification on irreducible Whittaker modules over quantum group Uqsl3,
Limeng XIA1, Xiangqian GUO2, Jiao ZHANG3()
1. Institute of Applied System Analysis, Jiangsu University, Zhenjiang 212013, China
2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
3. Department of Mathematics, Shanghai University, Shanghai 200444, China
 Download: PDF(279 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We define the Whittaker modules over the simply-connected quantum group Uqsl3, ; where is the weight lattice of Lie algebra sl3: Then we completely classify all those simple ones. Explicitly, a simple Whittaker module over Uqsl3, is either a highest weight module, or determined by two parametersz andγ* (up to a Hopf automorphism).

Keywords Quantum group      simple      Whittaker module      Whittaker vector     
Corresponding Author(s): Jiao ZHANG   
Issue Date: 11 October 2021
 Cite this article:   
Limeng XIA,Xiangqian GUO,Jiao ZHANG. Classification on irreducible Whittaker modules over quantum group Uqsl3,[J]. Front. Math. China, 2021, 16(4): 1089-1097.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0932-7
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I4/1089
1 D Adamović, R C Lü, K M Zhao. Whittaker modules for the affine Lie algebra A1(1).Adv Math, 2016, 289: 438–479
2 D Arnal, G Pinzcon. On algebraically irreducible representations of the Lie algebras sl2. J Math Phys, 1974, 15: 350–359
3 G Benkart, M Ondrus. Whittaker modules for generalized Weyl algebras. Represent Theory, 2009, 13: 141–164
https://doi.org/10.1090/S1088-4165-09-00347-1
4 K Christodoulopoulou. Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J Algebra, 2008, 320: 2871–2890
https://doi.org/10.1016/j.jalgebra.2008.06.025
5 X Q Guo, X W Liu. Whittaker modules over generalized Virasoro algebras. Comm Algebra, 2011, 39: 3222–3231
https://doi.org/10.1080/00927872.2010.499119
6 X Q Guo, X W Liu. Whittaker modules over Virasoro-like algebra. J Math Phys, 2011, 52(9): 093504 (9 pp)
https://doi.org/10.1063/1.3641245
7 J T Hartwig, N Yu. Simple Whittaker modules over free bosonic orbifold vertex operator algebras. Proc Amer Math Soc, 2019, 147: 3259–3272
https://doi.org/10.1090/proc/14461
8 J C Jantzen. Lectures on Quantum Groups. Grad Stud Math, Vol 6. Providence: Amer Math Soc, 1996
9 B Kostant. On Whittaker vectors and representation theory. Invent Math, 1978, 48: 101–184
https://doi.org/10.1007/BF01390249
10 L B Li, L M Xia, Y H Zhang. On the centers of quantum groups of An-type. Sci China Math, 2018, 61: 287–294
https://doi.org/10.1007/s11425-017-9119-0
11 D Liu, Y F Pei, L M Xia. Whittaker modules for the super-Virasoro algebras. J Algebra Appl, 2019, 18: 1950211 (13 pp)
https://doi.org/10.1142/S0219498819502116
12 X W Liu, X Q Guo. Whittaker modules over loop Virasoro algebra. Front Math China, 2013, 8(2): 393–410
https://doi.org/10.1007/s11464-012-0205-6
13 M Ondrus. Whittaker modules for Uq(sl2). J Algebra, 2005, 289: 192–213
14 M Ondrus, E Wiesner. Whittaker modules for the Virasoro algebra. J Algebra Appl, 2009, 8: 363-377
https://doi.org/10.1142/S0219498809003370
15 M Ondrus, E Wiesner. Whittaker categories for the Virasoro algebra. Comm Algebra, 2013, 41: 3910–3930
https://doi.org/10.1080/00927872.2012.693557
16 A Sevostyanov. Regular nilpotent elements and quantum groups. Comm Math Phys, 1999, 204: 1–16
https://doi.org/10.1007/s002200050634
17 A Sevostyanov. Quantum deformation of Whittaker modules and the Toda lattice. Duke Math J, 2000, 105: 211–238
https://doi.org/10.1215/S0012-7094-00-10522-4
[1] Jiaxin SHEN, Shenglin ZHOU. Flag-transitive 2-υ,5,λ designs with sporadic socle[J]. Front. Math. China, 2020, 15(6): 1201-1210.
[2] Shujuan WANG, Jixia YUAN, Wende LIU. Restricted Kac modules for special contact Lie superalgebras of odd type[J]. Front. Math. China, 2020, 15(2): 419-434.
[3] Qingzhi YANG, Yiyong LI. Standard tensor and its applications in problem of singular values of tensors[J]. Front. Math. China, 2019, 14(5): 967-987.
[4] Jinjing CHEN, Zhengxin CHEN. A class of simple Lie algebras attached to unit forms[J]. Front. Math. China, 2017, 12(4): 787-803.
[5] Stephan KLAUS. On combinatorial Gauss-Bonnet Theorem for general Euclidean simplicial complexes[J]. Front. Math. China, 2016, 11(5): 1345-1362.
[6] Yiyong LI,Qingzhi YANG,Yuning YANG. A new definition of geometric multiplicity of eigenvalues of tensors and some results based on it[J]. Front. Math. China, 2015, 10(5): 1123-1146.
[7] B. AKBARI,A. R. MOGHADDAMFAR. OD-Characterization of certain four dimensional linear groups with related results concerning degree patterns[J]. Front. Math. China, 2015, 10(1): 1-31.
[8] Guangzhou CHEN,Kejun CHEN,Yong ZHANG. Super-simple (5, 4)-GDDs of group type gu[J]. Front. Math. China, 2014, 9(5): 1001-1018.
[9] Ming LIU,Xia ZHANG. Characterization of compact quantum group[J]. Front. Math. China, 2014, 9(2): 321-328.
[10] Siyao MA, Xueming REN, Ying YUAN. On U-ample ω-semigroups[J]. Front Math Chin, 2013, 8(6): 1391-1405.
[11] Mingchun XU. Thompson’s conjecture for alternating group of degree 22[J]. Front Math Chin, 2013, 8(5): 1227-1236.
[12] Xuewen LIU, Xiangqian GUO. Whittaker modules over loop Virasoro algebra[J]. Front Math Chin, 2013, 8(2): 393-410.
[13] Min LI, Xiuling WANG. Factorization of simple modules for certain restricted two-parameter quantum groups[J]. Front Math Chin, 2013, 8(1): 169-190.
[14] Yuning YANG, Qingzhi YANG. Geometric simplicity of spectral radius of nonnegative irreducible tensors[J]. Front Math Chin, 2013, 8(1): 129-140.
[15] Hong SHEN, Hongping CAO, Guiyun CHEN. Characterization of automorphism groups of sporadic simple groups[J]. Front Math Chin, 2012, 7(3): 513-519.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed