Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (4) : 1063-1073    https://doi.org/10.1007/s11464-021-0950-5
RESEARCH ARTICLE
Decompositions of stochastic convolution driven by a white-fractional Gaussian noise
Ran WANG(), Shiling ZHANG
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
 Download: PDF(267 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let u={u(t, x); (t,x)+×}be the solution to a linear stochastic heat equation driven by a Gaussian noise, which is a Brownian motion in time and a fractional Brownian motion in space with Hurst parameterH(0,1): For any givenx(resp.,t+), we show a decomposition of the stochastic processtu(t,x)(resp.,xu(t,x))as the sum of a fractional Brownian motion with Hurst parameter H/2 (resp., H) and a stochastic process with C-continuous trajectories. Some applications of those decompositions are discussed.

Keywords Stochastic heat equation      fractional Brownian motion (fBm)      path regularity      law of the iterated logarithm     
Corresponding Author(s): Ran WANG   
Issue Date: 11 October 2021
 Cite this article:   
Ran WANG,Shiling ZHANG. Decompositions of stochastic convolution driven by a white-fractional Gaussian noise[J]. Front. Math. China, 2021, 16(4): 1063-1073.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0950-5
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I4/1063
1 R Balan, M Jolis, L Quer-Sardanyons. SPDEs with affine multiplicative fractional noise in space with index 14<H<12. Electron J Probab, 2015, 20(54): 1–36
https://doi.org/10.1214/EJP.v20-3719
2 R Balan, M Jolis, L Quer-Sardanyons. SPDEs with rough noise in space: Hölder continuity of the solution. Statist Probab Lett, 2016, 119: 310–316
https://doi.org/10.1016/j.spl.2016.09.003
3 R C Dalang. Extending martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e's. Electron J Probab, 1999, 4(6): 1–29
https://doi.org/10.1214/EJP.v4-43
4 M Foondun, D Khoshnevisan, P Mahboubi. Analysis of the gradient of the solution to a stochastic heat equation via fractional Brownian motion. Stoch Partial Differ Equ Anal Comput, 2015, 3: 133–158
https://doi.org/10.1007/s40072-015-0045-y
5 D Harnett, D Nualart. Decomposition and limit theorems for a class of self-similar Gaussian processes. In: Baudoin F, Peterson J, eds. Stochastic Analysis and Related Topics—A Festschrift in Honor of Rodrigo Bañuelos. Progr Probab, Vol 72. Basel: Birkhñuser/Springer, 2017, 99–116
https://doi.org/10.1007/978-3-319-59671-6_5
6 R Herrell, R M Song, D S Wu, Y M Xiao. Sharp space time regularity of the solution to stochastic heat equation driven by fractional colored noise. Stoch Anal Appl, 2020, 38(4): 747–768
https://doi.org/10.1080/07362994.2020.1721301
7 Y Z Hu. Some recent progress on stochastic heat equations. Acta Math Sci Ser B Engl Ed, 2019, 39(3): 874–914
https://doi.org/10.1007/s10473-019-0315-2
8 Y Z Hu, J Y Huang, K Lê, D Nualart, S Tindel. Stochastic heat equation with rough dependence in space. Ann Probab, 2017, 45(6): 4561–4616
https://doi.org/10.1214/16-AOP1172
9 Y Z Hu, X Wang. Stochastic heat equation with general noise. arXiv: 1912.05624
10 M Khalil, C Tudor. On the distribution and q-variation of the solution to the heat equation with fractional Laplacian. Probab Math Statist, 2019, 39(2): 315–335
https://doi.org/10.19195/0208-4147.39.2.5
11 D Khoshnevisan. Analysis of Stochastic Partial Differential Equations. CBMS Reg Conf Ser Math, No 119. Providence: Amer Math Soc, 2014
https://doi.org/10.1090/cbms/119
12 P Lei, D Nualart. A decomposition of the bifractional Brownian motion and some applications. Statist Probab Lett, 2009, 79(5): 619–624
https://doi.org/10.1016/j.spl.2008.10.009
13 M B Marcus, J Rosen. Markov Processes, Gaussian Processes, and Local Times. Cambridge Stud Adv Math, Vol 100. Cambridge: Cambridge Univ Press, 2006
https://doi.org/10.1017/CBO9780511617997
14 Y Mishura. Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Math, Vol 1929. Berlin: Springer-Verlag, 2008
https://doi.org/10.1007/978-3-540-75873-0
15 Y Mishura, K Ralchenko, G Shevchenko. Existence and uniqueness of a mild solution to the stochastic heat equation with white and fractional noises. Theory Probab Math Statist, 2019, 98: 149–170
https://doi.org/10.1090/tpms/1068
16 Y Mishura, K Ralchenko, M Zili. On mild and weak solutions for stochastic heat equations with piecewise-constant conductivity. Statist Probab Lett, 2020, 159: 108682
https://doi.org/10.1016/j.spl.2019.108682
17 D Monrad, H Rootzén. Small values of Gaussian processes and functional laws of the iterated logarithm. Probab Theory Related Fields, 1995, 192(91): 173–192
https://doi.org/10.1007/BF01375823
18 C Mueller, Z Wu. Erratum: A connection between the stochastic heat equation and fractional Brownian motion and a simple proof of a result of Talagrand. Electron Commun Probab, 2012, 17(8): 1–10
https://doi.org/10.1214/ECP.v17-1774
19 S Peszat, J Zabczyk. Stochastic evolution equations with a spatially homogeneous Wiener process. Stochastic Process Appl, 1997, 72(2): 187–204
https://doi.org/10.1016/S0304-4149(97)00089-6
20 V Pipiras, M S Taqqu. Integration questions related to fractional Brownian motion. Probab Theory Related Fields, 2000, 291: 251–291
https://doi.org/10.1007/s440-000-8016-7
21 G D Prato, J Zabczyk. Stochastic Equations in Infinite Dimensions. 2nd ed. Encyclopedia Math Appl, Vol 45. Cambridge: Cambridge Univ Press, 2014
22 J Song, X M Song, F Xu. Fractional stochastic wave equation driven by a Gaussian noise rough in space. Bernoulli, 2020, 26(4): 2699–2726
https://doi.org/10.3150/20-BEJ1204
23 S Tindel, C Tudor, F Viens. Stochastic evolution equations with fractional Brownian motion. Probab Theory Related Fields, 2003, 127: 186–204
https://doi.org/10.1007/s00440-003-0282-2
24 C A Tudor, Y M Xiao. Sample paths of the solution to the fractional-colored stochastic heat equation. Stoch Dyn, 2017, 17(1): 1750004
https://doi.org/10.1142/S0219493717500046
25 J B Walsh. An introduction to stochastic partial differential equations. In: Carmona R ,Kesten H, Walsh J B, eds. École d'Été de Probabilités de Saint Flour XIV-1984. Lecture Notes in Math, Vol 1180. Berlin: Springer-Verlag, 1986, 265–439
https://doi.org/10.1007/BFb0074920
26 Y M Xiao. Strong local nondeterminism and sample path properties of Gaussian random fields. In: Qian L F, Lai T L, Shao Q M, eds. Asymptotic Theory in Probability and Statistics with Applications. Adv Lect Math (ALM). Beijing: Higher Education Press, 2008, 136–176
[1] Fuquan XIA, Litan YAN, Jianhui ZHU. Forward and symmetric Wick-Itô integrals with respect to fractional Brownian motion[J]. Front. Math. China, 2021, 16(2): 623-645.
[2] Liping XU, Jiaowan LUO. Global attractiveness and exponential decay of neutral stochastic functional differential equations driven by fBm with Hurst parameter less than 1/2[J]. Front. Math. China, 2018, 13(6): 1469-1487.
[3] Yong REN,Tingting HOU,R. SAKTHIVEL. Non-densely defined impulsive neutral stochastic functional differential equations driven by fBm in Hilbert space with infinite delay[J]. Front. Math. China, 2015, 10(2): 351-365.
[4] Zhi LI,Jiaowan LUO. Transportation inequalities for stochastic delay evolution equations driven by fractional Brownian motion[J]. Front. Math. China, 2015, 10(2): 303-321.
[5] Junjun LIAO,Xiangjun WANG. Stability of stochastic differential equation with linear fractal noise[J]. Front. Math. China, 2014, 9(3): 495-507.
[6] Miao WANG,Jiang-Lun WU. Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations[J]. Front. Math. China, 2014, 9(3): 601-622.
[7] Jinqiao DUAN. Stochastic modeling of unresolved scales in complex systems[J]. Front Math Chin, 2009, 4(3): 425-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed