1 |
J AntezanaJ BrunaE Pujals. Linear independence of time frequency translates in Lp spaces. J Fourier Anal Appl, 2020, 26(4): 63 (15 pp)
|
2 |
R Balan. The noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operators. Trans Ams Math Soc 2008; 360(7): 3921–3941
|
3 |
R Balan, I Krishtal. An almost periodic noncommutative Wiener’s lemma. J Math Anal Appl 2010; 370(2): 339–349
|
4 |
J J Benedetto, A Bourouihiya. Linear independence of finite Gabor systems determined by behavior at infinity. J Geom Anal 2015; 25(1): 226–254
|
5 |
M Bownik, D Speegle. Linear independence of Parseval wavelets. Illinois J Math 2010; 54(2): 771–785
|
6 |
M Bownik, D Speegle. Linear independence of time-frequency translates of functions with faster than exponential decay. Bull Lond Math Soc 2013; 45(3): 554–556
|
7 |
M Bownik, D Speegle. Linear independence of time-frequency translates in Rd. J Geom Anal 2016; 26(3): 1678–1692
|
8 |
O Christensen. An Introduction to Frames and Riesz Bases. 2nd Ed, Applied and Numerical Harmonic Analysis, MA: Birkhäuser, 2016.
|
9 |
O Christensen, M Hasannasab. Gabor frames in l2(Z) and linear dependence. J Fourier Anal Appl 2019; 25(1): 101–107
|
10 |
O Christensen, A M Lindner. Lower bounds for finite wavelet and Gabor systems. Approx Theory Appl (N S) 2001; 17(1): 18–29
|
11 |
B CurreyV Oussa. HRT conjecture and linear independence of translates on the Heisenberg group. 2018
|
12 |
I Daubechies, Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol 61. Philadelphia, PA: SIAM, 1992.
|
13 |
C Demeter. Linear independence of time-frequency translates for special configurations. Math Res Lett 2010; 17(4): 761–779
|
14 |
C Demeter, S Z Gautam. On the finite linear independence of lattice Gabor systems. Proc Am Math Soc 2013; 141(5): 1735–1747
|
15 |
C Demeter, A Zaharescu. Proof of the HRT conjecture for (2, 2) configurations. J Math Anal Appl 2012; 388(1): 151–159
|
16 |
K Gröchenig. Linear independence of time-frequency shifts?. Monatsh Math 2015; 177(1): 67–77
|
17 |
C Heil. Linear independence of finite Gabor systems. In: Harmonic Analysis and Applications, Appl Numer Harmon Anal, Boston, MA: Birkhäuser Boston, 2006, 171–206
|
18 |
C Heil, J Ramanathan, P Topiwala. Linear independence of time-frequency translates. Proc Amer Math Soc 1996; 124(9): 2787–2795
|
19 |
C HeilD Speegle. The HRT conjecture and the Zero Divisor Conjecture for the Heisenberg group. In: Excursions in Harmonic Analysis, Appl and Numer Harmon Anal, Vol 3. Cham: Birkhäuser, 2015, 159–176
|
20 |
S Y Jitomirskaya. Metal-insulator transition for the almost Mathieu operator. Ann Math(2) 1999; 150(3): 1159–1175
|
21 |
M Kreisel. Linear independence of time frequency shifts up to extreme dilations. J Fourier Anal Appl 2019; 25(6): 3214–3219
|
22 |
G Kutyniok. Linear independence of time-frequency shifts under a generalized Schrödinger representation. Arch Math (Basel) 2002; 78(2): 135–144
|
23 |
J Lawrence, G E Pfander, D Walnut. Linear independence of Gabor systems in finite dimensional vector spaces. J Fourier Anal Appl 2005; 11(6): 715–726
|
24 |
D F Li. Mathematical Theory of Wavelet Analysis. Beijing: Science Press, 2017(in Chinese)
|
25 |
P A Linnell. Von Neumann algebras and linear independence of translates. Proc Amer Math Soc 1999; 127(11): 3269–3277
|
26 |
W C Liu. Letter to the Editor: Proof of the HRT conjecture for almost every (1, 3) configuration. J Fourier Anal Appl 2019; 25(4): 1350–1360
|
27 |
F NicolaS I Trapasso. A note on the HRT conjecture and a new uncertainty principle for the short-time Fourier transform. J Fourier Anal Appl, 2020, 26(4): 68 (7 pp)
|
28 |
K A Okoudjou. Extension and restriction principles for the HRT conjecture. J Fourier Anal Appl 2019; 25(4): 1874–1901
|
29 |
V Oussa. New insights into the HRT conjecture. 2019
|
30 |
J M Rosenblatt. Linear independence of translations. J Aust Math Soc Ser A 1995; 59(1): 131–133
|
31 |
J Rosenblatt. Linear independence of translations. Int J Pure Appl Math 2008; 45(2): 463–473
|
32 |
S Saliani. l2-linear independence for the system of integer translates of a square integrable function. Proc Amer Math Soc 2013; 141(3): 937–941
|
33 |
S Saliani. lp-linear independence for the system of integer translates. J Fourier Anal 2014; 20(4): 766–783
|
34 |
D W Stroock. Remarks on the HRT conjecture. In: Memoriam Marc Yor–Sćéminar on Probabilités Theory XLVII, Lecture Notes in Math, Vol 2137. Cham: Springer, 2015, 603–617
|