Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2024, Vol. 19 Issue (2) : 101-115    https://doi.org/10.3868/s140-DDD-024-0008-x
(3, 1)*-choosability of plane graphs without adjacent single cycles
Jufeng ZHANG1, Min CHEN1(), Yiqiao WANG2
1. College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China
2. School of Management, Beijing University of Chinese Medicine, Beijing 100029, China
 Download: PDF(785 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Given a list assignment of L to graph G, assign a list L(v) of colors to each vV(G). An (L, d)*-coloring is a mapping π that assigns a color π(v) L(v) to each vertex vV(G) such that at most d neighbors of v receive the color v. If there exists an (L, d)*-coloring for every list assignment L with |L(v)|k for all vV(G), then G is called to be (k, d)*-choosable. In this paper, we prove every planar graph G without adjacent k-cycles is (3, 1)*-choosable, where k {3, 4, 5}.

Keywords Plane graph      improper list coloring      (k, d)*-choosable      cycle     
Corresponding Author(s): Min CHEN   
Online First Date: 31 May 2024    Issue Date: 11 June 2024
 Cite this article:   
Jufeng ZHANG,Min CHEN,Yiqiao WANG. (3, 1)*-choosability of plane graphs without adjacent single cycles[J]. Front. Math. China, 2024, 19(2): 101-115.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.3868/s140-DDD-024-0008-x
https://academic.hep.com.cn/fmc/EN/Y2024/V19/I2/101
Fig.1  Weight rransfer rules (R0)?(R4)
1 J A BondyU S R Murty. Graph Theory. Graduate Texts in Mathematics, Vol 244. New York: Springer, 2008
2 M Chen, A Raspaud. On (3, 1)*-choosability of planar graphs without adjacent short cycles. Discrete Appl Math 2014; 162: 159–166
3 M Chen, A Raspaud, W F Wang. A (3, 1)*-choosable theorem on planar graphs. J Comb Optim 2016; 32(3): 927–940
4 L J Cowen, R H Cowen, D R Woodall. Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency. J Graph Theory 1986; 10(2): 187–195
5 W Cushing, H A Kierstead. Planar graphs are 1-relaxed, 4-choosable. European J Combin 2010; 31(5): 1385–1397
6 W Dong, B G Xu. A note on list improper coloring of plane graphs. Discrete Appl Math 2009; 157(2): 433–436
7 N Eaton, T Hull. Defective list colorings of planar graphs. Bull Inst Combin Appl 1999; 25: 79–87
8 K-W Lih, Z M Song, W F Wang, K M Zhang. A note on list improper coloring planar graphs. Appl Math Lett 2001; 14(3): 269–273
9 R Škrekovski. A Grötzsch-type theorem for list colourings with impropriety one. Combin Probab Comput 1999; 8(5): 493–507
10 C Thomassen. Every planar graph is 5-choosable. J Combin Theory Ser B 1994; 62(1): 180–181
11 M Voigt. List colourings of planar graphs. Discrete Math 1993; 120(1/2/3): 215–219
12 Y Q Wang, L J Xu. Improper choosability of planar graphs without 4-cycles. SIAM J Discrete Math 2013; 27(4): 2029–2037
13 B G Xu. On (3, 1)*-coloring of plane graphs. SIAM J. Discrete Math. 2008/2009; 23(1): 205–220
14 B G Xu, H H Zhang. Every toroidal graph without adjacent triangles is (4, 1)*-choosable. Discrete Appl Math 2007; 155(1): 74–78
15 L Zhang. A (3, 1)*-choosable theorem on toroidal graphs. Discrete Appl Math 2012; 160(3): 332–338
[1] Linlin FU, Jiahao XU, Fan WU. New proof of continuity of Lyapunov exponents for a class of smooth Schrödinger cocycles with weak Liouville frequencies[J]. Front. Math. China, 2020, 15(3): 467-489.
[2] Xie-Bin CHEN. Matchings extend to Hamiltonian cycles in hypercubes with faulty edges[J]. Front. Math. China, 2019, 14(6): 1117-1132.
[3] Lei LIU. Lagrangian Grassmann manifold Λ(2)[J]. Front. Math. China, 2018, 13(2): 341-365.
[4] Ruipu BAI,Ying LI. Extensions of n-Hom Lie algebras[J]. Front. Math. China, 2015, 10(3): 511-522.
[5] Min ZHOU,Haitao CAO. Almost resolvable maximum packings of complete graphs with 5-cycles[J]. Front. Math. China, 2015, 10(2): 461-475.
[6] Xie-Bin CHEN. Fault-free Hamiltonian cycles passing through a prescribed linear forest in 3-ary n-cube with faulty edges[J]. Front Math Chin, 2014, 9(1): 17-30.
[7] Hao FAN, Guizhen LIU. Properties of Hamilton cycles of circuit graphs of matroids[J]. Front Math Chin, 2013, 8(4): 801-809.
[8] Kai TAO. Continuity of Lyapunov exponent for analytic quasi-periodic cocycles on higher-dimensional torus[J]. Front Math Chin, 2012, 7(3): 521-542.
[9] Yanhong BAO, Xianneng DU, Yu YE. Poisson structures on basic cycles[J]. Front Math Chin, 2012, 7(3): 385-396.
[10] Linping PENG. Quadratic perturbations of a quadratic reversible center of genus one[J]. Front Math Chin, 2011, 6(5): 911-930.
[11] Han REN, Ni CAO, . Finding short cycles in embedded graph in polynomial time[J]. Front. Math. China, 2010, 5(2): 319-327.
[12] Xuanji HOU, . Stable one-dimensional quasi-periodic cocycles on unitary group[J]. Front. Math. China, 2009, 4(4): 651-658.
[13] Huanxia FA, Xiaoyan ZHENG, Junbo LI, . Second Leibniz cohomology group of twisted N = 2 superconformal algebra[J]. Front. Math. China, 2009, 4(4): 627-635.
[14] Jun-Ming XU, Meijie MA. Survey on path and cycle embedding in some networks[J]. Front Math Chin, 2009, 4(2): 217-252.
[15] LI Junbo, SU Yucai. Leibniz central extension on centerless twisted Schr?dinger-Virasoro algebra[J]. Front. Math. China, 2008, 3(3): 337-344.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed