Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (1) : 1-31    https://doi.org/10.1007/s11464-014-0430-2
RESEARCH ARTICLE
OD-Characterization of certain four dimensional linear groups with related results concerning degree patterns
B. AKBARI,A. R. MOGHADDAMFAR()
Department of Mathematics, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran Research Institute for Fundamental Sciences, Tabriz, Iran
 Download: PDF(263 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The prime graph of a finite group G, which is denoted by GK(G), is a simple graph whose vertex set is comprised of the prime divisors of |G| and two distinct prime divisors p and q are joined by an edge if and only if there exists an element of order pq in G. Let p1<p2<?<pk be all prime divisors of |G|. Then the degree pattern of G is defined as D(G) = (degG(p1), degG(p2), ? , degG(pk)), where degG(p) signifies the degree of the vertex p in GK(G). A finite group H is said to be OD-characterizable if G? H for every finite group G such that |G| = |H| and D(G) = D(H). The purpose of this article is threefold. First, it finds sharp upper and lower bounds on ?(G), the sum of degrees of all vertices in GK(G), for any finite group G (Theorem 2.1). Second, it provides the degree of vertices 2 and the characteristic p of the base field of any finite simple group of Lie type in their prime graphs (Propositions 3.1-3.7). Third, it proves the linear groups L4(q), q = 19, 23, 27, 29, 31, 32, and 37, are OD-characterizable (Theorem 4.2).

Keywords Prime graph      degree pattern      simple group     
Corresponding Author(s): A. R. MOGHADDAMFAR   
Issue Date: 30 December 2014
 Cite this article:   
B. AKBARI,A. R. MOGHADDAMFAR. OD-Characterization of certain four dimensional linear groups with related results concerning degree patterns[J]. Front. Math. China, 2015, 10(1): 1-31.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0430-2
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I1/1
1 Akbari B, Moghaddamfar A R. Recognizing by order and degree pattern of some projective special linear groups. Internat J Algebra Comput, 2012, 22(6) (22 pages)
2 Akbari M, Moghaddamfar A R. Simple groups which are 2-fold OD-characterizable. Bull Malays Math Sci Soc, 2012, 35(1): 65-77
3 Akbari M, Moghaddamfar A R, Rahbariyan S. A characterization of some finite simple groups through their orders and degree patterns. Algebra Colloq, 2012, 19(3): 473-482
https://doi.org/10.1142/S1005386712000338
4 Brandl R, Shi W J. A characterization of finite simple groups with abelian Sylow 2-subgroups. Ric Mat, 1993, 42(1): 193-198
5 Carter R W. Simple Groups of Lie Type. Pure and Applied Mathematics, Vol 28. London-New York-Sydney: John Wiley and Sons, 1972
6 Conway J H, Curtis R T, Norton S P, Parker R A, Wilson R A. Atlas of Finite Groups. Oxford, Clarendon Press, 1985
7 Deng H, Shi W J. The characterization of Ree groups 2F4(q) by their element orders. J Algebra, 1999, 217(1): 180-187
https://doi.org/10.1006/jabr.1998.7808
8 Hoseini A A, Moghaddamfar A R. Recognizing alternating groups Ap+3 for certain primes p by their orders and degree patterns. Front Math China, 2010, 5(3): 541-553
https://doi.org/10.1007/s11464-010-0011-y
9 Khosravi B. Some characterizations of L9(2) related to its prime graph. Publ Math Debrecen, 2009, 75(3-4): 375-385
10 Kogani-Moghaddam R, Moghaddamfar A R. Groups with the same order and degree pattern. Sci China Math, 2012, 55(4): 701-720
https://doi.org/10.1007/s11425-011-4314-6
11 Kondratév A S. On prime graph components of finite simple groups. Mat Sb, 1989, 180(6): 787-797
12 Kondratév A S, Mazurov V D. Recognition of alternating groups of prime degree from their element orders. Sib Math J, 2000, 41(2): 294-302
https://doi.org/10.1007/BF02674599
13 Lucido M S, Moghaddamfar A R. Groups with complete prime graph connected components. J Group Theory, 2004, 7(3): 373-384
https://doi.org/10.1515/jgth.2004.013
14 Mazurov V D. Recognition of finite simple groups S4(q) by their element orders. Algebra Logic, 2002, 41(2): 93-110
https://doi.org/10.1023/A:1015356614025
15 Moghaddamfar A R. Recognizability of finite groups by order and degree pattern. In: Proceedings of the International Conference on Algebra 2010. 2010, 422-433
16 Moghaddamfar A R, Rahbariyan S. More on the OD-characterizability of a finite group. Algebra Colloq, 2011, 18(4): 663-674
https://doi.org/10.1142/S1005386711000514
17 Moghaddamfar A R, Rahbariyan S. OD-Characterization of some linear groups over binary field and their automorphism groups. Comm Algebra (to appear)
18 Moghaddamfar A R, Zokayi A R. Recognizing finite groups through order and degree pattern. Algebra Colloq, 2008, 15(3): 449-456
https://doi.org/10.1142/S1005386708000424
19 Moghaddamfar A R, Zokayi A R. OD-Characterization of alternating and symmetric groups of degrees 16 and 22. Front Math China, 2009, 4(4): 669-680
https://doi.org/10.1007/s11464-009-0037-1
20 Moghaddamfar A R, Zokayi A R. OD-Characterization of certain finite groups having connected prime graphs. Algebra Colloq, 2010, 17(1): 121-130
https://doi.org/10.1142/S1005386710000143
21 Moghaddamfar A R, Zokayi A R, Darafsheh M R. A characterization of finite simple groups by the degrees of vertices of their prime graphs. Algebra Colloq, 2005, 12(3): 431-442
https://doi.org/10.1142/S1005386705000398
22 Rose J S. A Course on Group Theory. Cambridge: Cambridge University Press, 1978
23 Shi W J. A characterization of Suzuki’s simple groups. Proc Amer Math Soc, 1992, 114(2): 589-591
https://doi.org/10.1090/S0002-9939-1992-1074758-0
24 Suzuki M. On the prime graph of a finite simple group—an application of the method of Feit-Thompson-Bender-Glauberman. In: Groups and Combinatorics—in Memory of Michio Suzuki. Adv Stud Pure Math, 32. Tokyo: Math Soc Japan, 2001, 41-207
25 Vasilev A V, Gorshkov I B. On the recognition of finite simple groups with a connected prime graph. Sib Math J, 2009, 50(2): 233-238
https://doi.org/10.1007/s11202-009-0027-2
26 Vasilev A V, Vdovin E P. An adjacency criterion in the prime graph of a finite simple group. Algebra Logic, 2005, 44(6): 381-406
https://doi.org/10.1007/s10469-005-0037-5
27 Vasilev A V, Vdovin E P. Cocliques of maximal size in the prime graph of a finite simple group. Algebra Logic, 2011, 50(4): 291-322
https://doi.org/10.1007/s10469-011-9143-8
28 Williams J S. Prime graph components of finite groups. J Algebra, 1981, 69(2): 487-513
https://doi.org/10.1016/0021-8693(81)90218-0
29 Yan Y X, Chen G Y. OD-characterization of alternating and symmetric groups of degree 106 and 112. In: Proceedings of the International Conference on Algebra 2010. 2010, 690-696
30 Yan Y X, Chen G Y, Wang L L. OD-characterization of the automorphism groups of O10(2). Indian J Pure Appl Math, 2012, 43(3): 183-195
https://doi.org/10.1007/s13226-012-0011-6
31 Zavarnitsine A V. Finite simple groups with narrow prime spectrum. Sib Elektron Mat Izv, 2009, 6: 1-12
32 Zhang L C, Shi W J. OD-Characterization of all simple groups whose orders are less than 108. Front Math China, 2008, 3(3): 461-474
https://doi.org/10.1007/s11464-008-0026-9
33 Zhang L C, Shi W J. OD-Characterization of almost simple groups related to L2(49). Arch Math (Brno), 2008, 44(3): 191-199
34 Zhang L C, Shi W J. OD-Characterization of simple K4-groups. Algebra Colloq, 2009, 16(2): 275-282
https://doi.org/10.1142/S1005386709000273
35 Zhang L C, Shi W J. OD-Characterization of almost simple groups related to U3(5). Acta Math Sin (Engl Ser), 2010, 26(1): 161-168
https://doi.org/10.1007/s10114-010-7613-x
36 Zhang L C, Shi W J. OD-characterization of almost simple groups related to U6(2). Acta Math Sci Ser B Engl Ed, 2011, 31(2): 441-450
37 Zhang L C, Shi W J. OD-Characterization of the projective special linear groups L2(q). Algebra Colloq, 2012, 19(3): 509-524
https://doi.org/10.1142/S1005386712000375
38 Zhang L C, Shi W J, Shao C G, Wang L L. OD-Characterization of the simple group L3(9). J Guangxi Univ Natur Sci Ed, 2009, 34(1): 120-122
39 Zhang L C, Shi W J, Wang L L, Shao C G. OD-Characterization of A16. J Suzhou Univ Natur Sci Ed, 2008, 24(2): 7-10
40 Zsigmondy K. Zur Theorie der Potenzreste. Monatsh Math Phys, 1892, 3(1): 265-284
https://doi.org/10.1007/BF01692444
[1] Jiaxin SHEN, Shenglin ZHOU. Flag-transitive 2-υ,5,λ designs with sporadic socle[J]. Front. Math. China, 2020, 15(6): 1201-1210.
[2] Mingchun XU. Thompson’s conjecture for alternating group of degree 22[J]. Front Math Chin, 2013, 8(5): 1227-1236.
[3] Hong SHEN, Hongping CAO, Guiyun CHEN. Characterization of automorphism groups of sporadic simple groups[J]. Front Math Chin, 2012, 7(3): 513-519.
[4] Jing CHEN, Weijun LIU. Nonexistence of block-transitive 6-designs[J]. Front Math Chin, 2011, 6(5): 835-845.
[5] M. AKBARI, M. KHEIRABADI, A. R. MOGHADDAMFAR. Recognition by noncommuting graph of finite simple groups L4(q)[J]. Front Math Chin, 2011, 6(1): 1-16.
[6] A. A. HOSEINI, A. R. MOGHADDAMFAR, . Recognizing alternating groups A p +3 for certain primes p by their orders and degree patterns[J]. Front. Math. China, 2010, 5(3): 541-553.
[7] Lingli WANG, . Characterization of finite simple group D n (2)[J]. Front. Math. China, 2010, 5(1): 179-190.
[8] A. R. MOGHADDAMFAR, A. R. ZOKAYI, . OD-Characterization of alternating and symmetric groups of degrees 16 and 22[J]. Front. Math. China, 2009, 4(4): 669-680.
[9] ZHANG Liangcai, SHI Wujie. OD-Characterization of all simple groups whose orders are less than 10[J]. Front. Math. China, 2008, 3(3): 461-474.
[10] GRECHKOSEEVA Maria A., VASILEV Andrey V., SHI Wujie. Recognition by spectrum for finite simple groups of Lie type[J]. Front. Math. China, 2008, 3(2): 275-285.
[11] SHI Wujie. Pure quantitative characterization of finite simple groups[J]. Front. Math. China, 2007, 2(1): 123-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed