Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (5) : 1045-1056    https://doi.org/10.1007/s11464-017-0655-y
RESEARCH ARTICLE
Trivial extension of Koszul algebras
Zhi CHENG()
School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241002, China
 Download: PDF(160 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let Λ be a Koszul algebra, and let Mbe a graded Λ-bimodule. We prove that the trivial extension algebra of Λ by Mis also a Koszul algebra whenever Mis Koszul as a left Λ-module. Applications and examples are also provided.

Keywords Koszul algebra      Koszul module      trivial extension     
Corresponding Author(s): Zhi CHENG   
Issue Date: 30 September 2017
 Cite this article:   
Zhi CHENG. Trivial extension of Koszul algebras[J]. Front. Math. China, 2017, 12(5): 1045-1056.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-017-0655-y
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I5/1045
1 AuslanderM, ReitenI, SmaløS. Representation Theory of Artin Algebras.Cambridge: Cambridge Univ Press, 1997
2 BergerR. Koszulity of nonquadratic algebras.J Algebra, 2001, 239(2): 705–734
https://doi.org/10.1006/jabr.2000.8703
3 BianN, Ye Y, ZhangP. Generalized d-Koszul modules.Math Res Lett, 2011, 18(2):191–200
https://doi.org/10.4310/MRL.2011.v18.n2.a1
4 GreenE L, MarcosE N, Mart´ınez-VillaR, ZhangP. D-Koszul algebras.J Pure Appl Algebra, 2004, 193(1): 141–162
https://doi.org/10.1016/j.jpaa.2004.03.012
5 GreenE L, MarcosE N, ZhangP. Koszul modules and modules with linear presentations.Comm Algebra, 2003, 31(6): 2745–2770
https://doi.org/10.1081/AGB-120021891
6 GreenE L, Mart´ınez-VillaR. Koszul and Yoneda algebras. In: Bautista R, Mart´ınez-Villa R, Pe˜na J A D L, eds.Representation Theory of Algebras. Seventh International Conference, August 22–26, 1994, Cocoyoc, Mexico. CMS Conf Proc, Vol 18. Providence, Amer Math Soc, 1996, 247–306
7 Mart´ınez-VillaR, Montano-BermudezG. Triangular matrix and Koszul algebras, Int J Algebra, 2007, 1(10): 441–467
https://doi.org/10.12988/ija.2007.07049
8 PriddyS B. Koszul resolutions.Trans Amer Math Soc, 1970, 152(1): 39–60
https://doi.org/10.1090/S0002-9947-1970-0265437-8
9 SheltonB, TingeyC. On Koszul algebras and a new construction of Artin-Schelter regular algebras.J Algebra, 2001, 241(2): 789–798
https://doi.org/10.1006/jabr.2001.8781
10 YeY. Higher Koszul algebras and higher Koszul complexes.Ph D Thesis, Hefei: University of Science and Technology of China, 2002
11 YeY, ZhangP. Higher Koszul modules.Sci China Math, 2002, 32(11): 1042–1049
12 YeY, ZhangP. Higher Koszul complexes.Sci China Math, 2003, 46(1): 118–128
https://doi.org/10.1360/03ys9013
[1] Zhihua WANG, Libin LI. Double Frobenius algebras[J]. Front. Math. China, 2018, 13(2): 399-415.
[2] Huanhuan LI, Yunge XU. Koszulity and Koszul modules of dual extension algebras[J]. Front. Math. China, 2017, 12(3): 583-596.
[3] Jiafeng LÜ,Junling ZHENG. Koszul property of a class of graded algebras with nonpure resolutions[J]. Front. Math. China, 2016, 11(4): 985-1002.
[4] Bo HOU, Jinmei FAN. Hochschild cohomology of ?n-Galois coverings of an algebra[J]. Front Math Chin, 2012, 7(6): 1113-1128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed