Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (1) : 119-139    https://doi.org/10.1007/s11464-021-0906-9
RESEARCH ARTICLE
Fourier transform of anisotropic mixed-norm Hardy spaces
Long HUANG1, Der-Chen CHANG2,3, Dachun YANG1()
1. Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
2. Department of Mathematics and Statistics, Georgetown University, Washington, DC 20057, USA
3. Graduate Institute of Business Adminstration, College of Management, Fu Jen Catholic University, New Teipei City 242, China
 Download: PDF(349 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let a=(a1,...,an)[1,)n,p:=(p1,...pn)(0,1]n,Hap(n) be the anisotropic mixed-norm Hardy space associated with a defined via the radial maximal function, and let f belong to the Hardy space Hap(n). In this article, we show that the Fourier transform f^ coincides with a continuous function g on n in the sense of tempered distributions and, moreover, this continuous function g; multiplied by a step function associated with a; can be pointwisely controlled by a constant multiple of the Hardy space norm of f: These proofs are achieved via the known atomic characterization of Hap(n) and the establishment of two uniform estimates on anisotropic mixed-norm atoms. As applications, we also conclude a higher order convergence of the continuous function g at the origin. Finally, a variant of the Hardy{Littlewood inequality in the anisotropic mixed-norm Hardy space setting is also obtained. All these results are a natural generalization of the well-known corresponding conclusions of the classical Hardy spaces Hp(n) with p(0,1], and are even new for isotropic mixed-norm Hardy spaces on n.

Keywords Anisotropic (mixed-norm) Hardy space      Fourier transform      Hardy-Littlewood inequality     
Corresponding Author(s): Dachun YANG   
Issue Date: 26 March 2021
 Cite this article:   
Long HUANG,Der-Chen CHANG,Dachun YANG. Fourier transform of anisotropic mixed-norm Hardy spaces[J]. Front. Math. China, 2021, 16(1): 119-139.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0906-9
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I1/119
1 A Benedek, R Panzone. The space Lp; with mixed norm. Duke Math J, 1961, 28: 301–324
https://doi.org/10.1215/S0012-7094-61-02828-9
2 O V Besov, V P, Il'in P I Lizorkin. The Lp-estimates of a certain class of nonisotropically singular integrals. Dokl Akad Nauk SSSR, 1966, 169: 1250–1253(in Russian)
3 O V Besov, V P Il'in, S M Nikol'skiĭ. Integral Representations of Functions and Imbedding Theorems. Vol I.New York: Halsted Press (John Wiley and Sons), 1978
4 M Bownik. Anisotropic Hardy Spaces and Wavelets. Mem Amer Math Soc, Vol 164, No 781. Providence: Amer Math Soc, 2003
https://doi.org/10.1090/memo/0781
5 M Bownik, L-A D Wang. Fourier transform of anisotropic Hardy spaces. Proc Amer Math Soc, 2013, 141: 2299–2308
https://doi.org/10.1090/S0002-9939-2013-11623-0
6 R Bu, Z Fu, Y Zhang.Weighted estimates for bilinear square functions with non-smooth kernels and commutators. Front Math China, 2020, 15: 1–20
https://doi.org/10.1007/s11464-020-0822-4
7 T Chen, W Sun. Hardy-Littlewood-Sobolev inequality on mixed-norm Lebesgue spaces. arXiv: 1912.03712
8 T Chen, W Sun. Iterated and mixed weak norms with applications to geometric inequalities. J Geom Anal, 2020, 30: 4268–4323
https://doi.org/10.1007/s12220-019-00243-x
9 T Chen, W Sun. Extension of multilinear fractional integral operators to linear operators on mixed-norm Lebesgue spaces. Math Ann, 2020, doi.org/10.1007/s00208-020-02105-2
https://doi.org/10.1007/s00208-020-02105-2
10 G Cleanthous, A G Georgiadis. Mixed-norm α-modulation spaces. Trans Amer Math Soc, 2020, 373: 3323–3356
https://doi.org/10.1090/tran/8023
11 G Cleanthous, A G Georgiadis, M Nielsen. Anisotropic mixed-norm Hardy spaces. J Geom Anal, 2017, 27: 2758–2787
https://doi.org/10.1007/s12220-017-9781-8
12 G Cleanthous, A G Georgiadis, M Nielsen. Molecular decomposition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators. Appl Comput Harmon Anal, 2019, 47: 447–480
https://doi.org/10.1016/j.acha.2017.10.001
13 R R Coifman. Characterization of Fourier transforms of Hardy spaces. Proc Natl Acad Sci USA, 1974, 71: 4133–4134
https://doi.org/10.1073/pnas.71.10.4133
14 L Colzani. Fourier transform of distributions in Hardy spaces. Boll Unione Mat Ital A (6), 1982, 1: 403–410
15 Q Deng, D E. GuedjibaWeighted product Hardy space associated with operators. Front Math China, 2020, 15: 649–683
https://doi.org/10.1007/s11464-020-0852-y
16 E B Fabes, N M Rivière. Singular integrals with mixed homogeneity. Studia Math, 1966, 27: 19–38
https://doi.org/10.4064/sm-27-1-19-38
17 C Fefferman, E M Stein.Hp spaces of several variables. Acta Math, 1972, 129: 137–193
https://doi.org/10.1007/BF02392215
18 J García-Cuerva, V I Kolyada. Rearrangement estimates for Fourier transforms in Lp and Hp in terms of moduli of continuity. Math Nachr, 2001, 228: 123–144
https://doi.org/10.1002/1522-2616(200108)228:1<123::AID-MANA123>3.0.CO;2-A
19 A G Georgiadis, J Johnsen, M Nielsen. Wavelet transforms for homogeneous mixednorm Triebel–Lizorkin spaces. Monatsh Math, 2017, 183: 587–624
https://doi.org/10.1007/s00605-017-1036-z
20 J Hart, R H Torres, X Wu. Smoothing properties of bilinear operators and Leibniztype rules in Lebesgue and mixed Lebesgue spaces. Trans Amer Math Soc, 2018, 370: 8581–8612
https://doi.org/10.1090/tran/7312
21 L Hörmander. Estimates for translation invariant operators in Lp spaces. Acta Math, 1960, 104: 93–140
https://doi.org/10.1007/BF02547187
22 L Huang, J Liu, D Yang, W Yuan. Atomic and Littlewood-Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications. J Geom Anal, 2019, 29: 1991–2067
https://doi.org/10.1007/s12220-018-0070-y
23 L Huang, J, Liu D Yang, W Yuan. Dual spaces of anisotropic mixed-norm Hardy spaces. Proc Amer Math Soc, 2019, 147: 1201–1215
https://doi.org/10.1090/proc/14348
24 L Huang, J Liu, D Yang, W Yuan. Identification of anisotropic mixed-norm Hardy spaces and certain homogeneous Triebel-Lizorkin spaces. J Approx Theory, 2020, 258: 1–27
https://doi.org/10.1016/j.jat.2020.105459
25 L Huang, J Liu, D Yang, W Yuan. Real-variable characterizations of new anisotropic mixed-norm Hardy spaces. Comm Pure Appl Anal, 2020, 19: 3033–3082
https://doi.org/10.3934/cpaa.2020132
26 L Huang, F Weisz, D Yang, W Yuan. Summability of Fourier transforms on mixednorm Lebesgue spaces via associated Herz spaces. Preprint
27 L Huang, D Yang. On function spaces with mixed norms-a survey. J Math Study, 2019, doi.org/10.4208/jms.v54n3.21.03
28 L Huang, D Yang, W Yuan, Y Zhang. New ball Campanato-type function spaces and their applications. Preprint
29 B Jawerth. Some observations on Besov and Lizorkin–Triebel spaces. Math Scand, 1977, 40: 94–104
https://doi.org/10.7146/math.scand.a-11678
30 J Johnsen, S Munch Hansen, W Sickel. Characterisation by local means of anisotropic Lizorkin–Triebel spaces with mixed norms. Z Anal Anwend, 2013, 32: 257–277
https://doi.org/10.4171/ZAA/1484
31 J Johnsen, S Munch Hansen, W Sickel. Anisotropic Lizorkin{Triebel spaces with mixed norms-traces on smooth boundaries. Math Nachr, 2015, 288: 1327–1359
https://doi.org/10.1002/mana.201300313
32 J Johnsen, W Sickel. A direct proof of Sobolev embeddings for quasi-homogeneous Lizorkin–Triebel spaces with mixed norms. J Funct Spaces Appl, 2007, 5: 183–198
https://doi.org/10.1155/2007/714905
33 J Johnsen, W Sickel. On the trace problem for Lizorkin–Triebel spaces with mixed norms. Math Nachr, 2008, 281: 669–696
https://doi.org/10.1002/mana.200610634
34 P I Lizorkin. Multipliers of Fourier integrals and estimates of convolutions in spaces with mixed norm. Applications. Izv Akad Nauk SSSR Ser Mat, 1970, 34: 218–247
35 J Peetre. New Thoughts on Besov Spaces. Duke Univ Math Ser, No 1. Durham: Math Department, Duke Univ, 1976
36 E M Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.Princeton: Princeton Univ Press, 1993
https://doi.org/10.1515/9781400883929
37 E M Stein, S Wainger. Problems in harmonic analysis related to curvature. Bull Amer Math Soc, 1978, 84: 1239–1295
https://doi.org/10.1090/S0002-9904-1978-14554-6
38 M H Taibleson, G Weiss. The molecular characterization of certain Hardy spaces. Astérisque, 1980, 77: 67–149
39 H Wang, J Xu, J Tan. Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents. Front Math China, 2020, 15: 1011–1034
https://doi.org/10.1007/s11464-020-0864-7
40 X Yan, D Yang, W Yuan. Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces. Front Math China, 2020, 15: 769{806
https://doi.org/10.1007/s11464-020-0849-6
41 X Zhang, M Wei, D Yan, Q He. Equivalence of operator norm for Hardy{Littlewood maximal operators and their truncated operators on Morrey spaces. Front Math China, 2020, 15: 215–223
https://doi.org/10.1007/s11464-020-0812-6
[1] Xingya FAN, Jianxun HE, Jinsen XIAO, Wenjun YUAN. Radon transforms on Siegel-type nilpotent Lie groups[J]. Front. Math. China, 2019, 14(5): 855-866.
[2] Yanping CHEN, Liwei WANG. L2( n) boundedness for Calderón commutator with rough variable kernel[J]. Front. Math. China, 2018, 13(5): 1013-1031.
[3] Kun FAN, Rongming WANG. Valuation of correlation options under a stochastic interest rate model with regime switching[J]. Front. Math. China, 2017, 12(5): 1113-1130.
[4] Xiao YU,Shanzhen LU. Boundedness for a class of fractional integrals with a rough kernel related to block spaces[J]. Front. Math. China, 2016, 11(1): 173-187.
[5] Bolin MA, Huoxiong WU, Xiating ZHAO. Rough Marcinkiewicz integrals along certain smooth curves[J]. Front Math Chin, 2012, 7(5): 857-872.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed