Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (4) : 1075-1087    https://doi.org/10.1007/s11464-021-0959-9
RESEARCH ARTICLE
Genus-decreasing relation of Gromov-Witten invariants for surfaces under blow-up
Xiliang WANG()
Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
 Download: PDF(311 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Using the degeneration formula, we study the change of Gromov-Witten invariants under blow-up for symplectic 4-manifolds and obtain a genus-decreasing relation of Gromov-Witten invariant of symplectic four manifold under blow-up.

Keywords Gromov-Witten invariant      blow-up      degeneration formula     
Corresponding Author(s): Xiliang WANG   
Issue Date: 11 October 2021
 Cite this article:   
Xiliang WANG. Genus-decreasing relation of Gromov-Witten invariants for surfaces under blow-up[J]. Front. Math. China, 2021, 16(4): 1075-1087.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0959-9
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I4/1075
1 C H Clemens. Degeneration of Kähler manifolds. Duke Math J, 1977, 44(2): 215–290
https://doi.org/10.1215/S0012-7094-77-04410-6
2 S K Donaldson, I Smith. Lefschetz pencils and the canonical class for symplectic fourmanifolds. Topology, 2003, 42(4): 743–785
https://doi.org/10.1016/S0040-9383(02)00024-1
3 R Fintushel, R Stern. Immersed spheres in 4-manifolds and the immersed Thom conjecture. Turkish J Math, 1995, 19: 145–157
4 K Fukaya, K Ono. Arnold conjecture and Gromov-Witten invariant. Topology, 1999, 38(5): 933–1048
https://doi.org/10.1016/S0040-9383(98)00042-1
5 T Graber, R Pandharipande. Localization of virtual classes. Invent Math, 1999, 135: 487–518
https://doi.org/10.1007/s002220050293
6 W Q He, J X Hu, H Z Ke, X X Qi. Blow-up formulae of high genus Gromov-Witten invariants for threefolds. Math Z, 2018, 290(3-4): 857–872
https://doi.org/10.1007/s00209-018-2043-z
7 J X Hu. Gromov-Witten invariants of blow-ups along points and curves. Math Z, 2000, 233: 709–739
https://doi.org/10.1007/s002090050495
8 J X Hu, T-J Li, Y B Ruan. Birational cobordism invariance of uniruled symplectic manifolds. Invent Math, 2008, 172: 231–275
https://doi.org/10.1007/s00222-007-0097-3
9 E Ionel, T Parker. The symplectic sum formula for Gromov-Witten invariants. Ann of Math, 2004, 159(3): 935–1025
https://doi.org/10.4007/annals.2004.159.935
10 M Kontsevich, Y Mannin. Gromov-Witten classes, quantum cohomology, and enumerative geometry. Comm Math Phys, 1994, 164(3): 525–562
https://doi.org/10.1007/BF02101490
11 A-M Li, Y B Ruan. Symplectic surgery and Gromov-Witten invariants of Calabi 3-folds. Invent Math, 2001, 145(1): 151–218
https://doi.org/10.1007/s002220100146
12 J Li. A degeneration formula of GW-invariants. J Differential Geom, 2002, 60: 199–293
https://doi.org/10.4310/jdg/1090351102
13 J Li, G Tian. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. J Amer Math Soc, 1998, 11(1): 119–174
https://doi.org/10.1090/S0894-0347-98-00250-1
14 J Li, G Tian. Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds. In: Stern R J, ed. Topics in Symplectic 4-Manifolds. First International Press Lecture Ser, Vol 1. Boston: International Press, 1998, 47–83
15 T-J Li, A Liu. The equivalence between SW and GR in the case where b+=1. Int Math Res Not IMRN, 1999, 7: 335–345
https://doi.org/10.1155/S1073792899000173
16 D McDuff. The symplectomorphism group of a blow up. Geom Dedicata, 2008, 132: 1–29
https://doi.org/10.1007/s10711-007-9175-3
17 D McDuff, D Salamon. J-holomorphic Curves and Symplectic Topology. Amer Math Soc Colloq Publ, Vol 52. Providence: Amer Math Soc, 2012
18 D McDuff, M Tehrani, K Fukaya, D Joyce. Virtual Fundamental Cycles in Symplectic Topology. Math Surveys Monogr, Vol 237. Providence: Amer Math Soc, 2019
https://doi.org/10.1090/surv/237
19 R Pandharipande. Hodge integrals and degenerate contributions. Comm Math Phys, 1999, 208: 489–506
https://doi.org/10.1007/s002200050766
20 J Pardon. An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves. Geom Topol, 2016, 20(2): 779–1034
https://doi.org/10.2140/gt.2016.20.779
21 X X Qi. A blowup formula of high-genus Gromov-Witten invariants of symplectic 4-manifolds. Adv Math (China), 2014, 43: 603–607 (in Chinese)
22 Y B Ruan, G Tian. A mathematical theory of quantum cohomology. J Differential Geom, 1995, 42(2): 259–367
https://doi.org/10.4310/jdg/1214457234
23 Y B Ruan, G Tian. Higher genus symplectic invariants and sigma model coupled with gravity. Invent Math, 1997, 130: 455–516
https://doi.org/10.1007/s002220050192
24 C Taubes. Seiberg-Witten and Gromov Invariants for Symplectic 4-Manifolds. First International Press Lecture Ser, Vol 2. Boston: International Press, 2000
[1] Weichao GUO,Jiecheng CHEN. Stability of nonlinear Schrödinger equations on modulation spaces[J]. Front. Math. China, 2014, 9(2): 275-301.
[2] Zhanwen YANG, Hermann BRUNNER. Blow-up behavior of Hammerstein-type delay Volterra integral equations[J]. Front Math Chin, 2013, 8(2): 261-280.
[3] Yongsheng MI, Chunlai MU. A degenerate parabolic system with localized sources and nonlocal boundary condition[J]. Front Math Chin, 2012, 7(1): 97-116.
[4] Jinhuan WANG, Sining ZHENG, . Total versus single point blow-up in a localized heat system[J]. Front. Math. China, 2010, 5(2): 341-359.
[5] QIAO Lan, ZHENG Sining. Asymptotic analysis of a coupled nonlinear parabolic system[J]. Front. Math. China, 2008, 3(1): 87-99.
[6] HU Langhua, JIAN Huaiyu. Blow-up criterion for 2-D Boussinesq equations in bounded domain[J]. Front. Math. China, 2007, 2(4): 559-581.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed