|
|
|
Hardy factorization in terms of fractional commutators in Lorentz spaces |
Nguyen Anh DAO( ) |
| Institute of Applied Mathematics, University of Economics Ho Chi Minh City, Ho Chi Minh City, Vietnam |
|
|
|
|
Abstract We provide a constructive proof of (the classical Hardy space) factorization in terms of fractional commutators in Lorentz spaces. As a direct application, we obtain a characterization of functions in BMO space. Furthermore, we also obtain a Lorentz compactness characterization of fractional commutators.
|
| Keywords
BMO
CMO
Lorentz space
commutator
Hardy space
Riesz potential
|
|
Corresponding Author(s):
Nguyen Anh DAO
|
|
Issue Date: 28 December 2022
|
|
| 1 |
H Arai, T. Mizuhara Morrey spaces on spaces of homogeneous type and estimates for □b and the Cauchy-Szegö projection. Math Nachr, 1997, 186: 5–20
https://doi.org/10.1002/mana.3211850102
|
| 2 |
F Beatrous, S Y. Li Boundedness and compactness of operators of Hankel type. J Funct Anal, 1993, 111: 350–379
https://doi.org/10.1006/jfan.1993.1017
|
| 3 |
M Bramanti, M C. Cerutti Commutators of singular integrals on homogeneous spaces. Boll Unione Mat Ital B (7), 1996, 10(4): 843–883
|
| 4 |
Y. Brudnyi Compactness criteria for spaces of measurable functions. St Petersburg Math J, 2015, 26: 49–68
https://doi.org/10.1090/S1061-0022-2014-01330-1
|
| 5 |
A P Calderón, A. Zygmund Singular integral operators and differential equations. Amer J Math, 1957, 79: 901–921
https://doi.org/10.2307/2372441
|
| 6 |
S. Chanillo A note on commutators. Indiana Univ Math J, 1982, 31: 7–16
https://doi.org/10.1512/iumj.1982.31.31002
|
| 7 |
Y Chen, Y Ding, X. Wang Compactness of commutators of Riesz potential on Morrey spaces. Potential Anal, 2009, 30: 301–313
https://doi.org/10.1007/s11118-008-9114-4
|
| 8 |
F Chiarenza, M Frasca, P. Longo Solvability of the Dirichlet problem for non divergence elliptic equations with VMO coefficients. Trans Amer Math Soc, 1993, 336: 841–853
https://doi.org/10.1090/S0002-9947-1993-1088476-1
|
| 9 |
R Coifman, R Rochberg, G. Weiss Factorization theorems for Hardy spaces in several variables. Ann of Math, 1976, 103(3): 611–635
https://doi.org/10.2307/1970954
|
| 10 |
G. Dafni Local VMO and weak convergence in h1. Canad Math Bull, 2002, 45: 46–59
https://doi.org/10.4153/CMB-2002-005-2
|
| 11 |
N A. Dao Morrey boundedness and compactness characterizations of integral commutators with singular kernel on strictly pseudoconvex domains in ℂn. J Math Anal Appl, 2020, 492: 124483
https://doi.org/10.1016/j.jmaa.2020.124483
|
| 12 |
N A Dao, X T Duong, L K. Ha Commutators of Cauchy-Fantappiè type integrals on generalized Morrey spaces on domains of complex ellipsoids. J Geom Anal (to appear)
|
| 13 |
N A Dao, S G. Krantz Lorentz boundedness and compactness characterization of integral commutators on spaces of homogeneous type. Nonlinear Anal, 2021, 203: 112162
https://doi.org/10.1016/j.na.2020.112162
|
| 14 |
G Di Fazio, M A. Ragusa Commutators and Morrey spaces. Boll Unione Mat Ital A (7), 1991, 5(3): 323–332
|
| 15 |
L. Hedberg On certain convolution inequalities. Proc Amer Math Soc, 1972, 36: 505–510
https://doi.org/10.1090/S0002-9939-1972-0312232-4
|
| 16 |
T Iwaniec, C. Sboedone Riesz transform and elliptic PDEs with VMO-coefficients. J Anal Math, 1998, 74: 183–212
https://doi.org/10.1090/S0002-9939-1972-0312232-4
|
| 17 |
Y Komori, T. Mizuhara Factorization of functions in H1(ℝn) and generalized Morrey spaces. Math Nachr, 2006, 279(5-6): 619–624
https://doi.org/10.1002/mana.200310381
|
| 18 |
Y Komori, S. Shirai Weighted Morrey spaces and a singular integral operator. Math Nachr, 2009, 282(2): 219–231
https://doi.org/10.1002/mana.200610733
|
| 19 |
S G Krantz, S Y. Li Boundedness and compactness of integral operators on spaces of homogeneous type and applications II. J Math Anal Appl, 2001, 258: 642–657
https://doi.org/10.1006/jmaa.2000.7403
|
| 20 |
R. O’Neil Convolution operators and L(p; q) spaces. Duke Math J, 1963, 30: 129–142
https://doi.org/10.1215/S0012-7094-63-03015-1
|
| 21 |
E M. Stein Singular Integrals and Differentiability Properties of Functions. Princeton Math Ser, No 30. Princeton: Princeton Univ Press, 1970
https://doi.org/10.1515/9781400883882
|
| 22 |
J Tao, D C Yang, D Y. Yang Boundedness and compactness characterizations of Cauchy integral commutators on Morrey spaces. Math Methods Appl Sci, 2019, 42(5): 1631–1651
https://doi.org/10.1002/mma.5462
|
| 23 |
A. Uchiyama On the compactness of operators of Hankel type. Tohoku Math J, 1978, 30: 163–171
https://doi.org/10.2748/tmj/1178230105
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|