Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2022, Vol. 17 Issue (5) : 853-873    https://doi.org/10.1007/s11464-021-0946-1
RESEARCH ARTICLE
Hardy factorization in terms of fractional commutators in Lorentz spaces
Nguyen Anh DAO()
Institute of Applied Mathematics, University of Economics Ho Chi Minh City, Ho Chi Minh City, Vietnam
 Download: PDF(322 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We provide a constructive proof of H1(d) (the classical Hardy space) factorization in terms of fractional commutators in Lorentz spaces. As a direct application, we obtain a characterization of functions in BMO space. Furthermore, we also obtain a Lorentz compactness characterization of fractional commutators.

Keywords BMO      CMO      Lorentz space      commutator      Hardy space      Riesz potential     
Corresponding Author(s): Nguyen Anh DAO   
Issue Date: 28 December 2022
 Cite this article:   
Nguyen Anh DAO. Hardy factorization in terms of fractional commutators in Lorentz spaces[J]. Front. Math. China, 2022, 17(5): 853-873.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0946-1
https://academic.hep.com.cn/fmc/EN/Y2022/V17/I5/853
1 H Arai, T. Mizuhara Morrey spaces on spaces of homogeneous type and estimates for □b and the Cauchy-Szegö projection. Math Nachr, 1997, 186: 5–20
https://doi.org/10.1002/mana.3211850102
2 F Beatrous, S Y. Li Boundedness and compactness of operators of Hankel type. J Funct Anal, 1993, 111: 350–379
https://doi.org/10.1006/jfan.1993.1017
3 M Bramanti, M C. Cerutti Commutators of singular integrals on homogeneous spaces. Boll Unione Mat Ital B (7), 1996, 10(4): 843–883
4 Y. Brudnyi Compactness criteria for spaces of measurable functions. St Petersburg Math J, 2015, 26: 49–68
https://doi.org/10.1090/S1061-0022-2014-01330-1
5 A P Calderón, A. Zygmund Singular integral operators and differential equations. Amer J Math, 1957, 79: 901–921
https://doi.org/10.2307/2372441
6 S. Chanillo A note on commutators. Indiana Univ Math J, 1982, 31: 7–16
https://doi.org/10.1512/iumj.1982.31.31002
7 Y Chen, Y Ding, X. Wang Compactness of commutators of Riesz potential on Morrey spaces. Potential Anal, 2009, 30: 301–313
https://doi.org/10.1007/s11118-008-9114-4
8 F Chiarenza, M Frasca, P. Longo Solvability of the Dirichlet problem for non divergence elliptic equations with VMO coefficients. Trans Amer Math Soc, 1993, 336: 841–853
https://doi.org/10.1090/S0002-9947-1993-1088476-1
9 R Coifman, R Rochberg, G. Weiss Factorization theorems for Hardy spaces in several variables. Ann of Math, 1976, 103(3): 611–635
https://doi.org/10.2307/1970954
10 G. Dafni Local VMO and weak convergence in h1. Canad Math Bull, 2002, 45: 46–59
https://doi.org/10.4153/CMB-2002-005-2
11 N A. Dao Morrey boundedness and compactness characterizations of integral commutators with singular kernel on strictly pseudoconvex domains in ℂn. J Math Anal Appl, 2020, 492: 124483
https://doi.org/10.1016/j.jmaa.2020.124483
12 N A Dao, X T Duong, L K. Ha Commutators of Cauchy-Fantappiè type integrals on generalized Morrey spaces on domains of complex ellipsoids. J Geom Anal (to appear)
13 N A Dao, S G. Krantz Lorentz boundedness and compactness characterization of integral commutators on spaces of homogeneous type. Nonlinear Anal, 2021, 203: 112162
https://doi.org/10.1016/j.na.2020.112162
14 G Di Fazio, M A. Ragusa Commutators and Morrey spaces. Boll Unione Mat Ital A (7), 1991, 5(3): 323–332
15 L. Hedberg On certain convolution inequalities. Proc Amer Math Soc, 1972, 36: 505–510
https://doi.org/10.1090/S0002-9939-1972-0312232-4
16 T Iwaniec, C. Sboedone Riesz transform and elliptic PDEs with VMO-coefficients. J Anal Math, 1998, 74: 183–212
https://doi.org/10.1090/S0002-9939-1972-0312232-4
17 Y Komori, T. Mizuhara Factorization of functions in H1(ℝn) and generalized Morrey spaces. Math Nachr, 2006, 279(5-6): 619–624
https://doi.org/10.1002/mana.200310381
18 Y Komori, S. Shirai Weighted Morrey spaces and a singular integral operator. Math Nachr, 2009, 282(2): 219–231
https://doi.org/10.1002/mana.200610733
19 S G Krantz, S Y. Li Boundedness and compactness of integral operators on spaces of homogeneous type and applications II. J Math Anal Appl, 2001, 258: 642–657
https://doi.org/10.1006/jmaa.2000.7403
20 R. O’Neil Convolution operators and L(p; q) spaces. Duke Math J, 1963, 30: 129–142
https://doi.org/10.1215/S0012-7094-63-03015-1
21 E M. Stein Singular Integrals and Differentiability Properties of Functions. Princeton Math Ser, No 30. Princeton: Princeton Univ Press, 1970
https://doi.org/10.1515/9781400883882
22 J Tao, D C Yang, D Y. Yang Boundedness and compactness characterizations of Cauchy integral commutators on Morrey spaces. Math Methods Appl Sci, 2019, 42(5): 1631–1651
https://doi.org/10.1002/mma.5462
23 A. Uchiyama On the compactness of operators of Hankel type. Tohoku Math J, 1978, 30: 163–171
https://doi.org/10.2748/tmj/1178230105
[1] Zunwei FU, Elodie POZZI, Qingyan WU. Commutators of maximal functions on spaces of homogeneous type and their weighted, local versions[J]. Front. Math. China, 2022, 17(4): 625-652.
[2] Wanwan YANG, Bo LI. Boundary behavior of harmonic functions on metric measure spaces with non-negative Ricci curvature[J]. Front. Math. China, 2022, 17(3): 455-471.
[3] Shanzhen LU. Function characterizations via commutators of Hardy operator[J]. Front. Math. China, 2021, 16(1): 1-12.
[4] Long HUANG, Der-Chen CHANG, Dachun YANG. Fourier transform of anisotropic mixed-norm Hardy spaces[J]. Front. Math. China, 2021, 16(1): 119-139.
[5] Xia YU, Zongguang LIU. Boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents[J]. Front. Math. China, 2021, 16(1): 211-237.
[6] Qingquan DENG, Djalal Eddine GUEDJIBA. Weighted product Hardy space associated with operators[J]. Front. Math. China, 2020, 15(4): 649-683.
[7] Xianjie YAN, Dachun YANG, Wen YUAN. Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces[J]. Front. Math. China, 2020, 15(4): 769-806.
[8] Fanghui LIAO, Zhengyang LI. Hardy space estimates for bi-parameter Littlewood-Paley square functions[J]. Front. Math. China, 2020, 15(2): 333-349.
[9] Rui BU, Zunwei FU, Yandan ZHANG. Weighted estimates for bilinear square functions with non-smooth kernels and commutators[J]. Front. Math. China, 2020, 15(1): 1-20.
[10] Xing FU. Equivalent characterizations of Hardy spaces with variable exponent via wavelets[J]. Front. Math. China, 2019, 14(4): 737-759.
[11] Yanping CHEN, Liwei WANG. L2( n) boundedness for Calderón commutator with rough variable kernel[J]. Front. Math. China, 2018, 13(5): 1013-1031.
[12] Huixia MO, Xiaojuan WANG, Ruiqing MA. Commutator of Riesz potential in p-adic generalized Morrey spaces[J]. Front. Math. China, 2018, 13(3): 633-645.
[13] Nguyen Minh CHUONG, Nguyen Thi HONG, Ha Duy HUNG. Bounds of weighted multilinear Hardy-Cesàro operators in p-adic functional spaces[J]. Front. Math. China, 2018, 13(1): 1-24.
[14] Wei WANG, Jingshi XU. Multilinear Calderón-Zygmund operators and their commutators with BMO functions in variable exponent Morrey spaces[J]. Front. Math. China, 2017, 12(5): 1235-1246.
[15] Hui ZHANG, Chunyan QI, Baode LI. Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications[J]. Front. Math. China, 2017, 12(4): 993-1022.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed