Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2012, Vol. 6 Issue (4) : 366-375
PulseNet China, a model for future laboratory-based bacterial infectious disease surveillance in China
Wei Li, Shan Lu, Zhigang Cui, Jinghua Cui, Haijian Zhou, Yiqing Wang, Zhujun Shao, Changyun Ye, Biao Kan, Jianguo Xu()
State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing 100026, China
 Download: PDF(685 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Surveillance is critical for the prevention and control of infectious disease. China’s real-time web-based infectious disease reporting system is a distinguished achievement. However, many aspects of the current China Infectious Disease Surveillance System do not yet meet the demand for timely outbreak detection and identification of emerging infectious disease. PulseNet, the national molecular typing network for foodborne disease surveillance was first established by the Centers for Disease Control and Prevention of the United States in 1995 and has proven valuable in the early detection of outbreaks and tracing the pathogen source. Since 2001, the China CDC laboratory for bacterial pathogen analysis has been a member of the PulseNet International family; and has been adapting the idea and methodology of PulseNet to develop a model for a future national laboratory-based surveillance system for all bacterial infectious disease. We summarized the development progress for the PulseNet China system and discussed it as a model for the future of China’s national laboratory-based surveillance system.

Keywords infectious disease      laboratory-based infectious disease surveillance      pulse field gel electrophoresis      multilocus sequencing typing      PulseNet China     
Corresponding Author(s): Xu Jianguo,   
Issue Date: 05 December 2012
 Cite this article:   
Wei Li,Shan Lu,Zhigang Cui, et al. PulseNet China, a model for future laboratory-based bacterial infectious disease surveillance in China[J]. Front Med, 2012, 6(4): 366-375.
Fig.1  Illustration of PulseNet theory. The strains of pathogen isolated from suspected outbreaks are analyzed using PFGE. The digital data of the PFGE patterns from the isolates are coded and compared for possibly similar or identical patterns in the database. If an identical pattern is identified, epidemiological investigation will start to define possible relationships between or among the isolates. Actions will be suggested according to the laboratory results obtained.
Fig.2  The work flow of PulseNet China.
Fig.3  PFGE and MLST analysis of 4821 complex identified in China. (A) The PFGE patterns of strains from the 4821 complex. The chromosomal DNA was digested with restriction enzyme 1. (B) Minimum spanning tree analysis of the 4821 complex (Each circle shows a MLST type, the size of the circle indicates the number of isolates, and the halos surrounding the various types show the grouping obtained by Bionumerics analysis. The isolates from patients, healthy carriers, and close contacts are displayed in different colors).
Fig.4  PFGE and MLST analysis of isolates associated with the 2005 China outbreak. (A) The PAGE patterns of isolates isolated from China. The chromosomal DNA was digested with restriction enzyme I. The isolates from the 1998 outbreak, from patients and pigs in 2005 outbreak from Sichuan or other provinces showed identical PFGE pattern. (B) Minimum spanning tree analysis of ST7 and other sequence types (Each circle is a MLST type, the size of the circle corresponds to the number of isolates, and the halos surrounding the various types show the grouping obtained by Bionumerics analysis). ST7 to date has been isolated only in China.
Fig.5  PFGE and MLST analysis of X variant isolates from China. (A) The PFGE patterns of isolates from China. The chromosomal DNA of was digested with restriction enzyme I. The isolates of ST91 showed different PFGE patterns. (B) Minimum spanning tree analysis of ST91 and other sequence types. (Each circle shows a MLST type, the size of the circle corresponds to the number of isolates, and the halos surrounding the various types show the grouping obtained by Bionumerics analysis.)
1 Thacker SB, Berkelman RL. Public health surveillance in the United States. Epidemiol Rev 1988; 10: 164-190
2 Jajosky RA, Groseclose SL. Evaluation of reporting timeliness of public health surveillance systems for infectious diseases. BMC Public Health 2004; 4(1): 29
doi: 10.1186/1471-2458-4-29 pmid:15274746
3 Altmann M, Spode A, Altmann D, Wadl M, Benzler J, Eckmanns T, Krause G, an der Heiden M. Timeliness of surveillance during outbreak of Shiga Toxin-producing Escherichia coli infection, Germany, 2011. Emerg Infect Dis 2011; 17(10): 1906-1909
4 Rohde H, Qin J, Cui Y, Li D, Loman NJ, Hentschke M, Chen W, Pu F, Peng Y, Li J, Xi F, Li S, Li Y, Zhang Z, Yang X, Zhao M, Wang P, Guan Y, Cen Z, Zhao X, Christner M, Kobbe R, Loos S, Oh J, Yang L, Danchin A, Gao GF, Song Y, Li Y, Yang H, Wang J, Xu J, Pallen MJ, Wang J, Aepfelbacher M, Yang R. Open-source genomic analysis of Shiga-toxin-producing E. coli O104∶H4. N Engl J Med 2011; 365(8): 718-724
doi: 10.1056/NEJMoa1107643 pmid:21793736
5 Boxrud D, Monson T, Stiles T, Besser J. The role, challenges, and support of pulsenet laboratories in detecting foodborne disease outbreaks. Public Health Rep 2010; 125(Suppl 2): 57-62
6 Hopkins RS. Design and operation of state and local infectious disease surveillance systems. J Public Health Manag Pract 2005; 11(3): 184-190
7 Sahal N, Reintjes R, Aro AR. Review article: communicable diseases surveillance lessons learned from developed and developing countries: literature review. Scand J Public Health 2009; 37(2): 187-200
doi: 10.1177/1403494808101179 pmid:19179450
8 Gerner-Smidt P, Hise K, Kincaid J, Hunter S, Rolando S, Hyyti?-Trees E, Ribot EM, Swaminathan B. PulseNet USA: a five-year update. Foodborne Pathog Dis 2006; 3(1): 9-19
doi: 10.1089/fpd.2006.3.9 pmid:16602975
9 Taniguchi K, Hashimoto S, Kawado M, Murakami Y, Izumida M, Ohta A, Tada Y, Shigematsu M, Yasui Y, Nagai M. Overview of infectious disease surveillance system in Japan, 1999-2005. J Epidemiol 2007; 17(Suppl): S3-S13
doi: 10.2188/jea.17.S3 pmid:18239339
10 Zeng G, Zhang JK, Rou KM, Xu C, Cheng YK, Qi GM. Infectious disease surveillance in China. Biomed Environ Sci 1998; 11(1): 31-37
11 Wang L, Wang Y, Jin S, Wu Z, Chin DP, Koplan JP, Wilson ME. Emergence and control of infectious diseases in China. Lancet 2008; 372(9649): 1598-1605
doi: 10.1016/S0140-6736(08)61365-3 pmid:18930534
12 Feng Z, Li W, Varma JK. Gaps remain in China’s ability to detect emerging infectious diseases despite advances since the onset of SARS and avian flu. Health Aff (Millwood) 2011; 30(1): 127-135
doi: 10.1377/hlthaff.2010.0606 pmid:21209448
13 Swaminathan B, Barrett TJ, Hunter SB, Tauxe RV ; CDC PulseNet Task Force. PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis 2001; 7(3): 382-389
14 Stephenson,J. 1997. New approaches for detecting and curtailing foodborne microbial infections. JAMA 277:1337-1340
15 Hedberg CW, Besser JM. Commentary: cluster evaluation, PulseNet, and public health practice. Foodborne Pathog Dis 2006; 3(1): 32-35
doi: 10.1089/fpd.2006.3.32 pmid:16602977
16 Ransom G, Kaplan B. USDA uses PulseNet for food safety. J Am Vet Med Assoc 1998; 213(8): 1107
17 Terajima J, Izumiya H, Tamura K, Watanabe H. PulseNet Japan—network system for the utilization of epidemiological information and the results of pulsed-field gel electrophoresis. Nihon Rinsho 2002; 60(6): 1070-1076 (in Japanese)
18 Swaminathan B, Gerner-Smidt P, Ng LK, Lukinmaa S, Kam KM, Rolando S, Gutiérrez EP, Binsztein N. Building PulseNet International: an interconnected system of laboratory networks to facilitate timely public health recognition and response to foodborne disease outbreaks and emerging foodborne diseases. Foodborne Pathog Dis 2006; 3(1): 36-50
doi: 10.1089/fpd.2006.3.36 pmid:16602978
19 Wang LL, Xia SL, Hu WF, Gu L, Yang JC, Chen Q, Cui ZG, Xu YM, Wang X, Ye CY, Jing HQ, Xu JG. Molecular epidemiology of enterohaemorrhagic Esacherichia coli O157 in some areas in China. Chin J Epidemiol (Zhonghua Liu Xing Bing Xue Za Zhi) 2008; 29(1): 55-58 (in Chinese)
20 Watanabe H, Terajima J, Izumiya H, Iyoda S, Tamura K. PulseNet Japan: surveillance system for the early detection of diffuse outbreak based on the molecular epidemiological method. Kansenshogaku Zasshi 2002; 76(10): 842-848 (in Japanese)
21 Pang B, Jing H, Zheng H, Sun H, Zhao A, Xu J. Molecular typing of Shiga-toxin producing Escherichia coli O157:H7 isolated in China with pulsed field gel electrophresis. Chin J Epidemiol(Zhonghua Liu Xing Bing Xue Za Zhi) 2002; 23(2): 123-126 (in Chinese )
22 Alcorn T, Ouyang Y. China’s invisible burden of foodborne illness. Lancet 2012; 379(9818): 789-790
doi: 10.1016/S0140-6736(12)60330-4 pmid:22393571
23 Shao Z, Li W, Ren J, Liang X, Xu L, Diao B, Li M, Lu M, Ren H, Cui Z, Zhu B, Dai Z, Zhang L, Chen X, Kan B, Xu J. Identification of a new Neisseria meningitidis serogroup C clone from Anhui Province, China. Lancet 2006; 367(9508): 419-423
doi: 10.1016/S0140-6736(06)68141-5 pmid:16458767
24 Ye C, Bai X, Zhang J, Jing H, Zheng H, Du H, Cui Z, Zhang S, Jin D, Xu Y, Xiong Y, Zhao A, Luo X, Sun Q, Gottschalk M, Xu J. Spread of Streptococcus suis sequence type 7, China. Emerg Infect Dis 2008; 14(5): 787-791
doi: 10.3201/eid1405.070437 pmid:18439362
25 Ye C, Zhu X, Jing H, Du H, Segura M, Zheng H, Kan B, Wang L, Bai X, Zhou Y, Cui Z, Zhang S, Jin D, Sun N, Luo X, Zhang J, Gong Z, Wang X, Wang L, Sun H, Li Z, Sun Q, Liu H, Dong B, Ke C, Yuan H, Wang H, Tian K, Wang Y, Gottschalk M, Xu J. Streptococcus suis sequence type 7 outbreak, Sichuan, China. Emerg Infect Dis 2006; 12(8): 1203-1208
doi: 10.3201/eid1708.060232 pmid:16965698
26 Ye C, Lan R, Xia S, Zhang J, Sun Q, Zhang S, Jing H, Wang L, Li Z, Zhou Z, Zhao A, Cui Z, Cao J, Jin D, Huang L, Wang Y, Luo X, Bai X, Wang Y, Wang P, Xu Q, Xu J. Emergence of a new multidrug-resistant serotype X variant in an epidemic clone of Shigella flexneri. J Clin Microbiol 2010; 48(2): 419-426
doi: 10.1128/JCM.00614-09 pmid:19955273
27 Kosek M, Yori PP, Olortegui MP. Shigellosis update: advancing antibiotic resistance, investment empowered vaccine development, and green bananas. Curr Opin Infect Dis 2010; 23(5): 475-480
doi: 10.1097/QCO.0b013e32833da204 pmid:20689423
[1] Zhiruo Zhang, Shelan Liu, Mi Xiang, Shijian Li, Dahai Zhao, Chaolin Huang, Saijuan Chen. Protecting healthcare personnel from 2019-nCoV infection risks: lessons and suggestions[J]. Front. Med., 2020, 14(2): 229-231.
[2] Qiyong Liu, Wenbo Xu, Shan Lu, Jiafu Jiang, Jieping Zhou, Zhujun Shao, Xiaobo Liu, Lei Xu, Yanwen Xiong, Han Zheng, Sun Jin, Hai Jiang, Wuchun Cao, Jianguo Xu. Landscape of emerging and re-emerging infectious diseases in China: impact of ecology, climate, and behavior[J]. Front. Med., 2018, 12(1): 3-22.
[3] Biao Kan, Haijian Zhou, Pengcheng Du, Wen Zhang, Xin Lu, Tian Qin, Jianguo Xu. Transforming bacterial disease surveillance and investigation using whole-genome sequence to probe the trace[J]. Front. Med., 2018, 12(1): 23-33.
[4] Yujia Jin, Cheng Lei, Dan Hu, Dimiter S. Dimitrov, Tianlei Ying. Human monoclonal antibodies as candidate therapeutics against emerging viruses[J]. Front. Med., 2017, 11(4): 462-470.
[5] Changlin Cao, Jingxian Gu, Jingyao Zhang. Soluble triggering receptor expressed on myeloid cell-1 (sTREM-1): a potential biomarker for the diagnosis of infectious diseases[J]. Front. Med., 2017, 11(2): 169-177.
[6] Chunsong Hu,Qinghua Wu. Health: a dream from reality to the future[J]. Front. Med., 2016, 10(2): 233-235.
[7] Albert Cheung-Hoi Yu, Greg Vatcher, Xin Yue, Yan Dong, Mao Hua Li, Patrick H. K. Tam, Parker Y.L. Tsang, April K.Y. Wong, Michael H.K. Hui, Bin Yang, Hao Tang, Lok-Ting Lau. Nucleic acid-based diagnostics for infectious diseases in public health affairs[J]. Front Med, 2012, 6(2): 173-186.
[8] Min-Hao WU, Ping ZHANG, Xi HUANG, . Toll-like receptors in innate immunity and infectious diseases[J]. Front. Med., 2010, 4(4): 385-393.
Full text