Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2012, Vol. 6 Issue (2) : 173-186    https://doi.org/10.1007/s11684-012-0195-5
REVIEW
Nucleic acid-based diagnostics for infectious diseases in public health affairs
Albert Cheung-Hoi Yu1,2(), Greg Vatcher2, Xin Yue2, Yan Dong2, Mao Hua Li2, Patrick H. K. Tam2, Parker Y.L. Tsang2, April K.Y. Wong2, Michael H.K. Hui2, Bin Yang2, Hao Tang2, Lok-Ting Lau2()
1. Neuroscience Research Institute; Department of Neurobiology, School of Basic Medical Sciences; Key Laboratory for Neuroscience, Ministry of Education; Key Laboratory for Neuroscience, Ministry of Health; Peking University, Beijing 100191, China; 2. Hai Kang Life Corporation Limited, Hong Kong SAR, China and Beijing 100176, China
 Download: PDF(299 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Infectious diseases, mostly caused by bacteria and viruses but also a result of fungal and parasitic infection, have been one of the most important public health concerns throughout human history. The first step in combating these pathogens is to get a timely and accurate diagnosis at an affordable cost. Many kinds of diagnostics have been developed, such as pathogen culture, biochemical tests and serological tests, to help detect and fight against the causative agents of diseases. However, these diagnostic tests are generally unsatisfactory because they are not particularly sensitive and specific and are unable to deliver speedy results. Nucleic acid-based diagnostics, detecting pathogens through the identification of their genomic sequences, have shown promise to overcome the above limitations and become more widely adopted in clinical tests. Here we review some of the most popular nucleic acid-based diagnostics and focus on their adaptability and applicability to routine clinical usage. We also compare and contrast the characteristics of different types of nucleic acid-based diagnostics.

Keywords nucleic acid-based diagnostics      infectious disease      PCR      NASBA      LAMP      microarray      LOAC      public health affairs     
Corresponding Author(s): Yu Albert Cheung-Hoi,Email:achy@haikanglife.com, achy@hsc.pku.edu.cn; Lau Lok-Ting,Email:terence.lau@haikanglife.com   
Issue Date: 05 June 2012
 Cite this article:   
Albert Cheung-Hoi Yu,Greg Vatcher,Xin Yue, et al. Nucleic acid-based diagnostics for infectious diseases in public health affairs[J]. Front Med, 2012, 6(2): 173-186.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-012-0195-5
https://academic.hep.com.cn/fmd/EN/Y2012/V6/I2/173
Fig.1  Enhanced real-time PCR (ERT-PCR). The template sequence (RNA or DNA) is amplified with a set of specific primers. The PCR product is then used as a template for a second round of amplification using a second set of nested primers. During this second round of PCR a detection probe is included to quantitate the reaction in real-time. The probe contains a fluorescent reporter (R) and quencher (Q). When the reporter and quencher are close together there is no fluorescent signal. As the PCR continues the probe is displaced and cleaved, releasing the reporter which emits a detectable fluorescent signal.
Fig.2  Nucleic acid sequence-based amplification (NASBA). An RNA sequence of interest is amplified with reverse transcriptase and a sequence-specific primer. The DNA/RNA hybrid is then treated with RNase-H to hydrolyze the RNA. Reverse transcriptase and a second primer are then used to generate a double stranded DNA with incorporated RNA polymerase (RNAP) and ECL (or EOC) binding sites (see text for details). RNAP produces an RNA template of the target sequence which is used to repeat the whole cycle, allowing large amounts of the target sequence to be generated and detected.
1 Apostolopoulos Y, Sonmez S. Population mobility and infectious disease. New York, NY: Springer, 2007
2 Zetterstr?m R. The Nobel Prize in 2005 for the discovery of Helicobacter pylori: implications for child health. Acta Paediatr 2006; 95(1): 3-5
doi: 10.1080/08035250500479616 pmid:16373288
3 Vomelová I, Vanícková Z, Sedo A. Methods of RNA purification. All ways (should) lead to Rome. Folia Biol (Praha) 2009; 55(6): 243-251
pmid:20163774
4 Demeke T, Jenkins GR. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal Bioanal Chem 2010; 396(6): 1977-1990
doi: 10.1007/s00216-009-3150-9 pmid:19789856
5 Wu W, Tang YW. Emerging molecular assays for detection and characterization of respiratory viruses. Clin Lab Med 2009; 29(4): 673-693
doi: 10.1016/j.cll.2009.07.005 pmid:19892228
6 Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985; 230(4732): 1350-1354
doi: 2999980" target="_blank">10.1126/science. pmid:2999980 pmid:2999980
7 Chien A, Edgar DB, Trela JM. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 1976; 127(3): 1550-1557
pmid:8432
8 Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239(4839): 487-491
doi: 2448875" target="_blank">10.1126/science. pmid:2448875 pmid:2448875
9 Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR: pitfalls and potential. Biotechniques 1999; 26(1): 112-122, 124-125
pmid:9894600
10 Yu AC. The difficulties of testing for SARS. Science 2004; 303(5657): 469-471
doi: 10.1126/science.303.5657.469 pmid:14739441
11 Song HD, Tu CC, Zhang GW, Wang SY, Zheng K, Lei LC, Chen QX, Gao YW, Zhou HQ, Xiang H, Zheng HJ, Chern SW, Cheng F, Pan CM, Xuan H, Chen SJ, Luo HM, Zhou DH, Liu YF, He JF, Qin PZ, Li LH, Ren YQ, Liang WJ, Yu YD, Anderson L, Wang M, Xu RH, Wu XW, Zheng HY, Chen JD, Liang G, Gao Y, Liao M, Fang L, Jiang LY, Li H, Chen F, Di B, He LJ, Lin JY, Tong S, Kong X, Du L, Hao P, Tang H, Bernini A, Yu XJ, Spiga O, Guo ZM, Pan HY, He WZ, Manuguerra JC, Fontanet A, Danchin A, Niccolai N, Li YX, Wu CI, Zhao GP. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci USA 2005; 102(7): 2430-2435
doi: 10.1073/pnas.0409608102 pmid:15695582
12 Yu AC, Lau LT, Fung YW. Boosting the sensitivity of real-time polymerase-chain-reaction testing for SARS. N Engl J Med 2004; 350(15): 1577-1579
doi: 10.1056/NEJM200404083501523 pmid:15071137
13 Lau LT, Fung YW, Wong FP, Lin SS, Wang CR, Li HL, Dillon N, Collins RA, Tam JS, Chan PK, Wang CG, Yu AC. A real-time PCR for SARS-coronavirus incorporating target gene pre-amplification. Biochem Biophys Res Commun 2003; 312(4): 1290-1296
doi: 10.1016/j.bbrc.2003.11.064 pmid:14652014
14 Lau LT, Banks J, Aherne R, Brown IH, Dillon N, Collins RA, Chan KY, Fung YW, Xing J, Yu AC. Nucleic acid sequence-based amplification methods to detect avian influenza virus. Biochem Biophys Res Commun 2004; 313(2): 336-342
doi: 10.1016/j.bbrc.2003.11.131 pmid:14684165
15 Watson JD, Crick FH. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 1953; 171(4356): 737-738
doi: 10.1038/171737a0 pmid:13054692
16 Kremer EJ, Pritchard M, Lynch M, Yu S, Holman K, Baker E, Warren ST, Schlessinger D, Sutherland GR, Richards RI. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 1991; 252(5013): 1711-1714
doi: 1675488" target="_blank">10.1126/science. pmid:1675488 pmid:1675488
17 Gill P. DNA as evidence—the technology of identification. N Engl J Med 2005; 352(26): 2669-2671
doi: 10.1056/NEJMp048359 pmid:15987914
18 Alcamo IE. DNA analysis and diagnosis. In: DNA Technology: the Awesome Skill . New York: Academic Press, 2001
19 .Writing Committee of the WHO Consultation on Clinical Aspects of Pandemic (H1N1) 2009 Influenza,Bautista E, Chotpitayasunondh T, Gao Z, Harper SA, Shaw M, Uyeki TM, Zaki SR, Hayden FG, Hui DS, Kettner JD, Kumar A, Lim M, Shindo N, Penn C, Nicholson KG. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. N Engl J Med 2010; 362(18): 1708-1719
doi: 10.1056/NEJMra1000449 pmid:20445182
20 Oner AF, Bay A, Arslan S, Akdeniz H, Sahin HA, Cesur Y, Epcacan S, Yilmaz N, Deger I, Kizilyildiz B, Karsen H, Ceyhan M. Avian influenza A (H5N1) infection in eastern Turkey in 2006. N Engl J Med 2006; 355(21): 2179-2185
doi: 10.1056/NEJMoa060601 pmid:17124015
21 Boppana SB, Ross SA, Shimamura M, Palmer AL, Ahmed A, Michaels MG, Sánchez PJ, Bernstein DI, Tolan RW Jr, Novak Z, Chowdhury N, Britt WJ, Fowler KB; National Institute on Deafness and Other Communication Disorders CHIMES Study. Saliva polymerase-chain-reaction assay for cytomegalovirus screening in newborns . N Engl J Med 2011; 364(22): 2111-2118
doi: 10.1056/NEJMoa1006561 pmid:21631323
22 McDermott U, Downing JR, Stratton MR. Genomics and the continuum of cancer care. N Engl J Med 2011; 364(4): 340-350
doi: 10.1056/NEJMra0907178 pmid:21268726
23 Baltzell K, Buehring GC, Krishnamurthy S, Kuerer H, Shen HM, Sison JD. Limited evidence of human papillomavirus on breast tissue using molecular in situ methods. Cancer 2011; 118(5): 1212-1220
doi: 10.1002/cncr.26389 pmid:21823105
24 Yamamoto Y. PCR in diagnosis of infection: detection of bacteria in cerebrospinal fluids. Clin Diagn Lab Immunol 2002; 9(3): 508-514
pmid:11986253
25 Labarre P, Gerlach J, Wilmoth J, Beddoe A, Singleton J, Weigl B.Non-instrumented nucleic acid amplification (NINA): instrument-free molecular malaria diagnostics for low-resource settings. Conf Proc IEEE Eng Med Biol Soc 2010 ; 2010: 1097-1099 21096560
doi: 10.1109/IEMBS.2010.5627346
26 Compton J. Nucleic acid sequence-based amplification. Nature 1991; 350(6313): 91-92
doi: 10.1038/350091a0 pmid:1706072
27 Romano JW, van Gemen B, Kievits T. NASBA: a novel, isothermal detection technology for qualitative and quantitative HIV-1 RNA measurements. Clin Lab Med 1996; 16(1): 89-103
pmid:8867585
28 Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep 2004; 5(8): 795-800
doi: 10.1038/sj.embor.7400200 pmid:15247927
29 Liu D, Daubendiek SL, Zillman MA, Ryan K, Kool ET. Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J Am Chem Soc 1996; 118(7): 1587-1594
doi: 10.1021/ja952786k pmid:20830216
30 Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 1992; 20(7): 1691-1696
doi: 10.1093/nar/20.7.1691 pmid:1579461
31 Walker GT, Little MC, Nadeau JG, Shank DD. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci USA 1992; 89(1): 392-396
doi: 10.1073/pnas.89.1.392 pmid:1309614
32 Lau LT, Fung YW, Yu AC. Detection of animal viruses using nucleic acid sequence-based amplification (NASBA). Dev Biol (Basel) 2006; 126: 7-15
pmid:17058476
33 Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol 1990; 28(3): 495-503
pmid:1691208
34 Collins RA, Ko LS, So KL, Ellis T, Lau LT, Yu AC. A NASBA method to detect high- and low-pathogenicity H5 avian influenza viruses. Avian Dis 2003; 47(3 Suppl): 1069-1074
doi: 10.1637/0005-2086-47.s3.1069 pmid:14575113
35 Gu J, Xie Z, Gao Z, Liu J, Korteweg C, Ye J, Lau LT, Lu J, Gao Z, Zhang B, McNutt MA, Lu M, Anderson VM, Gong E, Yu AC, Lipkin WI. H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet 2007; 370(9593): 1137-1145
doi: 10.1016/S0140-6736(07)61515-3 pmid:17905166
36 Leone G, van Schijndel H, van Gemen B, Kramer FR, Schoen CD. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Res 1998; 26(9): 2150-2155
doi: 10.1093/nar/26.9.2150 pmid:9547273
37 Loens K, Ieven M, Ursi D, De Laat C, Sillekens P, Oudshoorn P, Goossens H. Improved detection of rhinoviruses by nucleic acid sequence-based amplification after nucleotide sequence determination of the 5′ noncoding regions of additional rhinovirus strains. J Clin Microbiol 2003; 41(5): 1971-1976
doi: 10.1128/JCM.41.5.1971-1976.2003 pmid:12734236
38 Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 2000; 28(12): E63
doi: 10.1093/nar/28.12.e63 pmid:10871386
39 Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 2002; 16(3): 223-229
doi: 10.1006/mcpr.2002.0415 pmid:12144774
40 Tomita N, Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 2008; 3(5): 877-882
doi: 10.1038/nprot.2008.57 pmid:18451795
41 Mori Y, Kitao M, Tomita N, Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods 2004; 59(2): 145-157
doi: 10.1016/j.jbbm.2003.12.005 pmid:15163526
42 Karlsen F, Steen HB, Nesland JM. SYBR green I DNA staining increases the detection sensitivity of viruses by polymerase chain reaction. J Virol Methods 1995; 55(1): 153-156
doi: 10.1016/0166-0934(95)00053-W pmid:8576305
43 Mori Y, Hirano T, Notomi T. Sequence specific visual detection of LAMP reactions by addition of cationic polymers. BMC Biotechnol 2006; 6(1): 3
doi: 10.1186/1472-6750-6-3 pmid:16401354
44 Romano JW, Shurtliff RN, Dobratz E, Gibson A, Hickman K, Markham PD, Pal R. Quantitative evaluation of simian immunodeficiency virus infection using NASBA technology. J Virol Methods 2000; 86(1): 61-70
doi: 10.1016/S0166-0934(99)00184-6 pmid:10713377
45 Lau LT, Reid SM, King DP, Lau AM, Shaw AE, Ferris NP, Yu AC. Detection of foot-and-mouth disease virus by nucleic acid sequence-based amplification (NASBA). Vet Microbiol 2008; 126(1-3): 101-110
doi: 10.1016/j.vetmic.2007.07.008 pmid:17728080
46 Collins RA, Ko LS, So KL, Ellis T, Lau LT, Yu AC. Detection of highly pathogenic and low pathogenic avian influenza subtype H5 (Eurasian lineage) using NASBA. J Virol Methods 2002; 103(2): 213-225
doi: 10.1016/S0166-0934(02)00034-4 pmid:12008015
47 Romano JW, Shurtliff RN, Grace M, Lee EM, Ginocchio C, Kaplan M, Pal R. Macrophage-derived chemokine gene expression in human and macaque cells: mRNA quantification using NASBA technology. Cytokine 2001; 13(6): 325-333
doi: 10.1006/cyto.2001.0843 pmid:11292315
48 Simpkins SA, Chan AB, Hays J, P?pping B, Cook N. An RNA transcription-based amplification technique (NASBA) for the detection of viable Salmonella enterica. Lett Appl Microbiol 2000; 30(1): 75-79
doi: 10.1046/j.1472-765x.2000.00670.x pmid:10728566
49 Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother 2009; 15(2): 62-69
doi: 10.1007/s10156-009-0669-9 pmid:19396514
50 Hara-Kudo Y, Yoshino M, Kojima T, Ikedo M. Loop-mediated isothermal amplification for the rapid detection of Salmonella. FEMS Microbiol Lett 2005; 253(1): 155-161
doi: 10.1016/j.femsle.2005.09.032 pmid:16242860
51 Hill J, Beriwal S, Chandra I, Paul VK, Kapil A, Singh T, Wadowsky RM, Singh V, Goyal A, Jahnukainen T, Johnson JR, Tarr PI, Vats A. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli. J Clin Microbiol 2008; 46(8): 2800-2804
doi: 10.1128/JCM.00152-08 pmid:18550738
52 Iturriza-Gómara M, Xerry J, Gallimore CI, Dockery C, Gray J. Evaluation of the Loopamp (loop-mediated isothermal amplification) kit for detecting Norovirus RNA in faecal samples. J Clin Virol 2008; 42(4): 389-393
doi: 10.1016/j.jcv.2008.02.012 pmid:18394955
53 Poon LL, Leung CS, Tashiro M, Chan KH, Wong BW, Yuen KY, Guan Y, Peiris JS. Rapid detection of the severe acute respiratory syndrome (SARS) coronavirus by a loop-mediated isothermal amplification assay. Clin Chem 2004; 50(6): 1050-1052
doi: 10.1373/clinchem.2004.032011 pmid:15054079
54 Imai M, Ninomiya A, Minekawa H, Notomi T, Ishizaki T, Tashiro M, Odagiri T. Development of H5-RT-LAMP (loop-mediated isothermal amplification) system for rapid diagnosis of H5 avian influenza virus infection. Vaccine 2006; 24(44-46): 6679-6682
doi: 10.1016/j.vaccine.2006.05.046 pmid:16797110
55 Geojith G, Dhanasekaran S, Chandran SP, Kenneth J. Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting. J Microbiol Methods 2011; 84(1): 71-73
doi: 10.1016/j.mimet.2010.10.015 pmid:21047534
56 Ito M, Watanabe M, Nakagawa N, Ihara T, Okuno Y. Rapid detection and typing of influenza A and B by loop-mediated isothermal amplification: comparison with immunochromatography and virus isolation. J Virol Methods 2006; 135(2): 272-275
doi: 10.1016/j.jviromet.2006.03.003 pmid:16616961
57 Shan S, Ko LS, Collins RA, Wu Z, Chen J, Chan KY, Xing J, Lau LT, Yu AC. Comparison of nucleic acid-based detection of avian influenza H5N1 with virus isolation. Biochem Biophys Res Commun 2003; 302(2): 377-383
doi: 10.1016/S0006-291X(03)00165-7 pmid:12604358
58 Kaneko H, Kawana T, Fukushima E, Suzutani T. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J Biochem Biophys Methods 2007; 70(3): 499-501
doi: 10.1016/j.jbbm.2006.08.008 pmid:17011631
59 Lau LT, Feng XY, Lam TY, Hui HK, Yu AC. Development of multiplex nucleic acid sequence-based amplification for detection of human respiratory tract viruses. J Virol Methods 2010; 168(1-2): 251-254
doi: 10.1016/j.jviromet.2010.04.027 pmid:20447419
60 Loens K, Beck T, Ursi D, Overdijk M, Sillekens P, Goossens H, Ieven M. Evaluation of different nucleic acid amplification techniques for the detection of M. pneumoniae, C. pneumoniae and Legionella spp. in respiratory specimens from patients with community-acquired pneumonia. J Microbiol Methods 2008; 73(3): 257-262
doi: 10.1016/j.mimet.2008.02.010 pmid:18378345
61 Loens K, Beck T, Ursi D, Overdijk M, Sillekens P, Goossens H, Ieven M. Development of real-time multiplex nucleic acid sequence-based amplification for detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella spp. in respiratory specimens. J Clin Microbiol 2008; 46(1): 185-191
doi: 10.1128/JCM.00447-07 pmid:18032625
62 Mader A, Riehle U, Brandstetter T, Stickeler E, zur Hausen A, Rühe J. Microarray-based amplification and detection of RNA by nucleic acid sequence based amplification. Anal Bioanal Chem 2010; 397(8): 3533-3541
doi: 10.1007/s00216-010-3892-4 pmid:20596698
63 Iseki H, Alhassan A, Ohta N, Thekisoe OM, Yokoyama N, Inoue N, Nambota A, Yasuda J, Igarashi I. Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simultaneous detection of bovine Babesia parasites. J Microbiol Methods 2007; 71(3): 281-287
doi: 10.1016/j.mimet.2007.09.019 pmid:18029039
64 Lam L, Sakakihara S, Ishizuka K, Takeuchi S, Arata HF, Fujita H, Noji H. Loop-mediated isothermal amplification of a single DNA molecule in polyacrylamide gel-based microchamber. Biomed Microdevices 2008; 10(4): 539-546
doi: 10.1007/s10544-008-9163-x pmid:18302022
65 Niemz A, Ferguson TM, Boyle DS. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 2011; 29(5): 240-250
doi: 10.1016/j.tibtech.2011.01.007 pmid:21377748
66 Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98(3): 503-517
doi: 10.1016/S0022-2836(75)80083-0 pmid:1195397
67 Maskos U, Southern EM. Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic Acids Res 1992; 20(7): 1679-1684
doi: 10.1093/nar/20.7.1679 pmid:1579459
68 Kafatos FC, Jones CW, Efstratiadis A. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res 1979; 7(6): 1541-1552
doi: 10.1093/nar/7.6.1541 pmid:503860
69 Saiki RK, Walsh PS, Levenson CH, Erlich HA. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci USA 1989; 86(16): 6230-6234
doi: 10.1073/pnas.86.16.6230 pmid:2762325
70 Bains W, Smith GC. A novel method for nucleic acid sequence determination. J Theor Biol 1988; 135(3): 303-307
doi: 10.1016/S0022-5193(88)80246-7 pmid:3256722
71 Yamada M, Kato K, Shindo K, Nomizu M, Sakairi N, Yamamoto H, Nishi N. Immobilization of DNA by UV irradiation and its utilization as functional materials. Nucleic Acids Symp Ser 1999; 42(1): 103-104
pmid:10780400
72 Müller UR, Nicolau DV. Microarray technology and its applications. Berlin: Springer, 2005: xxii-379
73 Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270(5235): 467-470
doi: 10.1126/science.270.5235.467 pmid:7569999
74 Allemand JF, Bensimon D, Jullien L, Bensimon A, Croquette V. pH-dependent specific binding and combing of DNA. Biophys J 1997; 73(4): 2064-2070
doi: 10.1016/S0006-3495(97)78236-5 pmid:9336201
75 Henke L, Piunno PAE, McClure AC, Krull UJ. Covalent immobilization of single-stranded DNA onto optical fibers using various linkers. Anal Chim Acta 1997; 344(3): 201-213
doi: 10.1016/S0003-2670(97)00056-1
76 Henke L, Krull UJ. Immobilization technologies used for nucleic acid biosensors: a review. Can J Anal Sci Spectros 1999; 44(2): 61-70
77 Piunno PAE, Hanafi-Bagby D, Henke L, Krull Ulrich J. A critical review of nucleic acid biosensor and chip-based oligonucleotide array technologies. In: Chemical and Biological Sensors for Environmental Monitoring . American Chemical Society, 2000: 257-291
78 Palchetti I, Mascini M, Wittmann C. Electrochemical adsorption technique for immobilization of single-stranded oligonucleotides onto carbon screen-printed electrodes immobilisation of DNA on chips II. Vol. 261 . Berlin / Heidelberg: Springer, 2005: 27-43
79 Algar WR, Lim Y, Massey M, Wong AKY, Ye Y, Krull UJ. Assembly of oligonucleotide probes on surfaces for development of biosensors and biochips. In: Soft Nanomaterials. American Scientific Publishers , 2009: 1-66
80 Masarik M, Kizek R, Kramer KJ, Billova S, Brazdova M, Vacek J, Bailey M, Jelen F, Howard JA. Application of avidin-biotin technology and adsorptive transfer stripping square-wave voltammetry for detection of DNA hybridization and avidin in transgenic avidin maize. Anal Chem 2003; 75(11): 2663-2669
doi: 10.1021/ac020788z pmid:12948134
81 Nuzzo RG, Allara DL. Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 1983; 105(13): 4481-4483
doi: 10.1021/ja00351a063
82 Wink T, van Zuilen SJ, Bult A, van Bennkom WP. Self-assembled monolayers for biosensors. Analyst (Lond) 1997; 122(4): 43R-50R
doi: 10.1039/a606964i pmid:9177074
83 Ruediger D, Daniel H, Rajendra R, Alistair R. The role of substrates in microarray experimentation and how to choose the correct coating for microarraying. In: Microarray Innovations . CRC Press, 2009: 53-69
84 Okamoto T, Suzuki T, Yamamoto N. Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol 2000; 18(4): 438-441
doi: 10.1038/74507 pmid:10748527
85 de Gans BJ, Schubert US. Inkjet printing of well-defined polymer dots and arrays. Langmuir 2004; 20(18): 7789-7793
doi: 10.1021/la049469o pmid:15323532
86 Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science 1991; 251(4995): 767-773
doi: 1990438" target="_blank">10.1126/science. pmid:1990438 pmid:1990438
87 Fodor SPA. DNA Sequencing: massively parallel genomics. Science 1997; 277(5324): 393-395
doi: 10.1126/science.277.5324.393
88 May GS. Fundamentals of semiconductor fabrication. New York, Chichester: Wiley, 2003: 320
89 Ahrendt SA, Halachmi S, Chow JT, Wu L, Halachmi N, Yang SC, Wehage S, Jen J, Sidransky D. Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc Natl Acad Sci USA 1999; 96(13): 7382-7387
doi: 10.1073/pnas.96.13.7382 pmid:10377423
90 Shen Y, Miller DT, Cheung SW, Lip V, Sheng X, Tomaszewicz K, Shao H, Fang H, Tang HS, Irons M, Walsh CA, Platt O, Gusella JF, Wu BL. Development of a focused oligonucleotide-array comparative genomic hybridization chip for clinical diagnosis of genomic imbalance. Clin Chem 2007; 53(12): 2051-2059
doi: 10.1373/clinchem.2007.090290 pmid:17901113
91 Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005; 365(9460): 671-679
pmid:15721472
92 Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, DeRisi JL. Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci USA 2002; 99(24): 15687-15692
doi: 10.1073/pnas.242579699 pmid:12429852
93 Chiu CY, Rouskin S, Koshy A, Urisman A, Fischer K, Yagi S, Schnurr D, Eckburg PB, Tompkins LS, Blackburn BG, Merker JD, Patterson BK, Ganem D, DeRisi JL. Microarray detection of human parainfluenza virus 4 infection associated with respiratory failure in an immunocompetent adult. Clin Infect Dis 2006; 43(8): e71-e76
doi: 10.1086/507896 pmid:16983602
94 Chen EC, Miller SA, DeRisi JL, Chiu CY. Using a pan-viral microarray assay (Virochip) to screen clinical samples for viral pathogens. J Vis Exp 2011; 50: 2536
doi: 10.3791/2536 pmid:21559002
95 Wilson WJ, Strout CL, DeSantis TZ, Stilwell JL, Carrano AV, Andersen GL. Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol Cell Probes 2002; 16(2): 119-127
doi: 10.1006/mcpr.2001.0397 pmid:12030762
96 Schick B, Wemmert S, Willnecker V, Dlugaiczyk J, Nicolai P, Siwiec H, Thiel CT, Rauch A, Wendler O. Genome-wide copy number profiling using a 100K SNP array reveals novel disease-related genes BORIS and TSHZ1 in juvenile angiofibroma. Int J Oncol 2011; 39(5): 1143-1151
pmid:21874228
97 Tuefferd M, de Bondt A, Van den Wyngaert I, Talloen W, G?hlmann H. Microarray profiling of DNA extracted from FFPE tissues using SNP 6.0 Affymetrix platform. Methods Mol Biol 2011; 724: 147-160
doi: 10.1007/978-1-61779-055-3_10 pmid:21370012
98 Herring CD, Palsson BO. An evaluation of Comparative Genome Sequencing (CGS) by comparing two previously-sequenced bacterial genomes. BMC Genomics 2007; 8(1): 274
doi: 10.1186/1471-2164-8-274 pmid:17697331
99 Chui JV, Weisfeld-Adams JD, Tepperberg J, Mehta L. Clinical and molecular characterization of chromosome 7p22.1 microduplication detected by array CGH. Am J Med Genet A 2011; 155A(10): 2508-2511
doi: 10.1002/ajmg.a.34180 pmid:21998864
100 Panzeri E, Conconi D, Antolini L, Redaelli S, Valsecchi MG, Bovo G, Pallotti F, Viganò P, Strada G, Dalprà L, Bentivegna A. Chromosomal aberrations in bladder cancer: fresh versus formalin fixed paraffin embedded tissue and targeted FISH versus wide microarray-based CGH analysis. PLoS ONE 2011; 6(9): e24237
doi: 10.1371/journal.pone.0024237 pmid:21909424
101 Gorski JJ, Savage KI, Mulligan JM, McDade SS, Blayney JK, Ge Z, Harkin DP. Profiling of the BRCA1 transcriptome through microarray and ChIP-chip analysis. Nucleic Acids Research 2011; 39(22): 9536-9548 21880590
doi: 10.1093/nar/gkr679
102 Schwartzman J, Mongoue-Tchokote S, Gibbs A, Gao L, Corless CL, Jin J, Zarour L, Higano C, True LD, Vessella RL, Wilmot B, Bottomly D, McWeeney SK, Bova GS, Partin AW, Mori M, Alumkal J. A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer. Epigenetics 2011; 6(10): 1248-1256
doi: 10.4161/epi.6.10.17727 pmid:21946329
103 Kong BW, Song JJ, Lee JY, Hargis BM, Wing T, Lassiter K, Bottje W. Gene expression in breast muscle associated with feed efficiency in a single male broiler line using a chicken 44K oligo microarray. I. Top differentially expressed genes. Poult Sci 2011; 90(11): 2535-2547
doi: 10.3382/ps.2011-01435 pmid:22010239
104 Takahashi H, Tainaka H, Umezawa M, Takeda K, Tanaka H, Nishimune Y, Oshio S. Evaluation of testicular toxicology of doxorubicin based on microarray analysis of testicular specific gene expression. J Toxicol Sci 2011; 36(5): 559-567
doi: 10.2131/jts.36.559 pmid:22008532
105 Fixe F, Cabe?a R, Chu V, Prazeres DMF, Ferreira GNM, Conde JP. Electric-field-pulse-assisted covalent immobilization of DNA in the nanosecond time scale. Appl Phys Lett 2003; 83(7): 1465-1467
doi: 10.1063/1.1594839
106 Edman CF, Raymond DE, Wu DJ, Tu E, Sosnowski RG, Butler WF, Nerenberg M, Heller MJ. Electric field directed nucleic acid hybridization on microchips. Nucleic Acids Res 1997; 25(24): 4907-4914
doi: 10.1093/nar/25.24.4907 pmid:9396795
107 Moreno-Hagelsieb L, Foultier B, Laurent G, Pampin R, Remacle J, Raskin JP, Flandre D. Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors. Biosens Bioelectron 2007; 22(9-10): 2199-2207
doi: 10.1016/j.bios.2006.10.024 pmid:17129721
108 Fixe F, Chu V, Prazeres DM, Conde JP. An on-chip thin film photodetector for the quantification of DNA probes and targets in microarrays. Nucleic Acids Res 2004; 32(9): e70
doi: 10.1093/nar/gnh066 pmid:15148343
109 Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 2005; 23(10): 1294-1301
doi: 10.1038/nbt1138 pmid:16170313
110 Gao A, Lu N, Dai P, Li T, Pei H, Gao X, Gong Y, Wang Y, Fan C. Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett 2011; 11(9): 3974-3978 21848308
doi: 10.1021/nl202303y
111 Varadan VK, Jiang X, Varadan VV. Microstereomicrolithography and other fabrication techniques for 3D MEMS. Chichester: Wiley, 2001:xiii-260
112 Ng JM, Gitlin I, Stroock AD, Whitesides GM. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 2002; 23(20): 3461-3473
doi: 10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8 pmid:12412113
113 Lin MC, Chu CJ, Tsai LC, Lin HY, Wu CS, Wu YP, Wu YN, Shieh DB, Su YW, Chen CD. Control and detection of organosilane polarization on nanowire field-effect transistors. Nano Lett 2007; 7(12): 3656-3661
doi: 10.1021/nl0719170
114 Castillo-Salgado C. Trends and directions of global public health surveillance. Epidemiol Rev 2010; 32(1): 93-109
doi: 10.1093/epirev/mxq008 pmid:20534776
115 Chan KH, Lai ST, Poon LL, Guan Y, Yuen KY, Peiris JS. Analytical sensitivity of rapid influenza antigen detection tests for swine-origin influenza virus (H1N1). J Clin Virol 2009; 45(3): 205-207
doi: 10.1016/j.jcv.2009.05.034 pmid:19539521
116 Ngaosuwankul N, Noisumdaeng P, Komolsiri P, Pooruk P, Chokephaibulkit K, Chotpitayasunondh T, Sangsajja C, Chuchottaworn C, Farrar J, Puthavathana P. Influenza A viral loads in respiratory samples collected from patients infected with pandemic H1N1, seasonal H1N1 and H3N2 viruses. Virol J 2010; 7(1): 75
doi: 10.1186/1743-422X-7-75 pmid:20403211
117 Lee N, Chan PK, Hui DS, Rainer TH, Wong E, Choi KW, Lui GC, Wong BC, Wong RY, Lam WY, Chu IM, Lai RW, Cockram CS, Sung JJ. Viral loads and duration of viral shedding in adult patients hospitalized with influenza. J Infect Dis 2009; 200(4): 492-500
doi: 10.1086/600383 pmid:19591575
118 Cagnin S, Caraballo M, Guiducci C, Martini P, Ross M, SantaAna M, Danley D, West T, Lanfranchi G. Overview of electrochemical DNA biosensors: new approaches to detect the expression of life. Sensors (Basel Switzerland) 2009; 9(4): 3122-3148
doi: 10.3390/s90403122
119 Peterson AW, Heaton RJ, Georgiadis RM. The effect of surface probe density on DNA hybridization. Nucleic Acids Res 2001; 29(24): 5163-5168
doi: 10.1093/nar/29.24.5163 pmid:11812850
120 Fuchs J, Fiche JB, Buhot A, Calemczuk R, Livache T. Salt concentration effects on equilibrium melting curves from DNA microarrays. Biophys J 2010; 99(6): 1886-1895
doi: 10.1016/j.bpj.2010.07.002 pmid:20858434
121 Nakano S, Fujimoto M, Hara H, Sugimoto N. Nucleic acid duplex stability: influence of base composition on cation effects. Nucleic Acids Res 1999; 27(14): 2957-2965
doi: 10.1093/nar/27.14.2957 pmid:10390539
122 Halperin A, Buhot A, Zhulina EB. Hybridization at a surface: the role of spacers in DNA microarrays. Langmuir 2006; 22(26): 11290-11304
doi: 10.1021/la0616606 pmid:17154618
123 Vanderhoeven J, Pappaert K, Dutta B, Van Hummelen P, Desmet G. DNA microarray enhancement using a continuously and discontinuously rotating microchamber. Anal Chem 2005; 77(14): 4474-4480
doi: 10.1021/ac0502091 pmid:16013862
124 Chen CC, Ku WC, Chiu SK, Tzeng CM. Deoxyribonucleic acid hybridization acceleration by photovoltaic effect. Appl Phys Lett 2006; 89(23): 233902
125 Sosnowski RG, Tu E, Butler WF, O’Connell JP, Heller MJ. Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc Natl Acad Sci USA 1997; 94(4): 1119-1123
doi: 10.1073/pnas.94.4.1119 pmid:9037016
126 Heller MJ, Forster AH, Tu E. Active microeletronic chip devices which utilize controlled electrophoretic fields for multiplex DNA hybridization and other genomic applications. Electrophoresis 2000; 21(1): 157-164
doi: 10.1002/(SICI)1522-2683(20000101)21:1<157::AID-ELPS157>3.0.CO;2-E pmid:10634482
127 Fixe F, Chu V, Prazeres DM, Conde JP. Single base mismatch detection by microsecond voltage pulses. Biosens Bioelectron 2005; 21(6): 888-893
doi: 10.1016/j.bios.2005.02.011 pmid:16257657
128 Fixe F, Branz HM, Louro N, Chu V, Prazeres DM, Conde JP. Electric-field assisted immobilization and hybridization of DNA oligomers on thin-film microchips. Nanotechnology 2005; 16(10): 2061-2071
doi: 10.1088/0957-4484/16/10/014 pmid:20817972
129 Fixe F, Branz HM, Louro N, Chu V, Prazeres DM, Conde JP. Immobilization and hybridization by single sub-millisecond electric field pulses, for pixel-addressed DNA microarrays. Biosens Bioelectron 2004; 19(12): 1591-1597
doi: 10.1016/j.bios.2003.12.012 pmid:15142592
130 Erickson D, Liu X, Krull U, Li D. Electrokinetically controlled DNA hybridization microfluidic chip enabling rapid target analysis. Anal Chem 2004; 76(24): 7269-7277
doi: 10.1021/ac049396d pmid:15595869
131 Swami N, Chou CF, Ramamurthy V, Chaurey V. Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis. Lab Chip 2009; 9(22): 3212-3220
doi: 10.1039/b910598k pmid:19865727
132 Creager S, Yu CJ, Bamdad C, O’Connor S, MacLean T, Lam E, Chong Y, Olsen GT, Luo J, Gozin M, Kayyem JF. Electron transfer at electrodes through conjugated “molecular wire” bridges. J Am Chem Soc 1999; 121(5): 1059-1064
doi: 10.1021/ja983204c
133 Peterlinz KA, Georgiadis RM, Herne TM, Tarlov MJ. Observation of hybridization and dehybridization of thiol-tethered DNA using two-color surface plasmon resonance spectroscopy. J Am Chem Soc 1997; 119(14): 3401-3402
doi: 10.1021/ja964326c
134 Taton TA, Mirkin CA, Letsinger RL. Scanometric DNA array detection with nanoparticle probes. Science 2000; 289(5485): 1757-1760
doi: 10.1126/science.289.5485.1757 pmid:10976070
135 Robelek R, Niu L, Schmid EL, Knoll W. Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry. Anal Chem 2004; 76(20): 6160-6165
doi: 10.1021/ac049351c pmid:15481968
[1] Zhiruo Zhang, Shelan Liu, Mi Xiang, Shijian Li, Dahai Zhao, Chaolin Huang, Saijuan Chen. Protecting healthcare personnel from 2019-nCoV infection risks: lessons and suggestions[J]. Front. Med., 2020, 14(2): 229-231.
[2] Fanfan Li, Mengzhou He, Meitao Yang, Yao Fan, Yun Chen, Xi Xia, Yin Xie, Dongrui Deng. Alteration of heat shock protein 20 expression in preeclamptic patients and its effect in vascular and coagulation function[J]. Front. Med., 2018, 12(5): 542-549.
[3] Hanjiang Lai, Chen Huang, Jian Cai, Julian Ye, Jun She, Yi Zheng, Liqian Wang, Yelin Wei, Weijia Fang, Xianjun Wang, Yi-Wei Tang, Yun Luo, Dazhi Jin. Simultaneous detection and characterization of toxigenic Clostridium difficile directly from clinical stool specimens[J]. Front. Med., 2018, 12(2): 196-205.
[4] Qiyong Liu, Wenbo Xu, Shan Lu, Jiafu Jiang, Jieping Zhou, Zhujun Shao, Xiaobo Liu, Lei Xu, Yanwen Xiong, Han Zheng, Sun Jin, Hai Jiang, Wuchun Cao, Jianguo Xu. Landscape of emerging and re-emerging infectious diseases in China: impact of ecology, climate, and behavior[J]. Front. Med., 2018, 12(1): 3-22.
[5] Biao Kan, Haijian Zhou, Pengcheng Du, Wen Zhang, Xin Lu, Tian Qin, Jianguo Xu. Transforming bacterial disease surveillance and investigation using whole-genome sequence to probe the trace[J]. Front. Med., 2018, 12(1): 23-33.
[6] Yujia Jin, Cheng Lei, Dan Hu, Dimiter S. Dimitrov, Tianlei Ying. Human monoclonal antibodies as candidate therapeutics against emerging viruses[J]. Front. Med., 2017, 11(4): 462-470.
[7] Changlin Cao, Jingxian Gu, Jingyao Zhang. Soluble triggering receptor expressed on myeloid cell-1 (sTREM-1): a potential biomarker for the diagnosis of infectious diseases[J]. Front. Med., 2017, 11(2): 169-177.
[8] Xinsen Xu,Yanyan Zhou,Runchen Miao,Wei Chen,Kai Qu,Qing Pang,Chang Liu. Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis[J]. Front. Med., 2016, 10(2): 183-190.
[9] Chunsong Hu,Qinghua Wu. Health: a dream from reality to the future[J]. Front. Med., 2016, 10(2): 233-235.
[10] Lu Wang. Identification of cancer gene fusions based on advanced analysis of the human genome or transcriptome[J]. Front Med, 2013, 7(3): 280-289.
[11] Wei Li, Shan Lu, Zhigang Cui, Jinghua Cui, Haijian Zhou, Yiqing Wang, Zhujun Shao, Changyun Ye, Biao Kan, Jianguo Xu. PulseNet China, a model for future laboratory-based bacterial infectious disease surveillance in China[J]. Front Med, 2012, 6(4): 366-375.
[12] Min-Hao WU, Ping ZHANG, Xi HUANG, . Toll-like receptors in innate immunity and infectious diseases[J]. Front. Med., 2010, 4(4): 385-393.
[13] Geqing XIA MD, Zehua WANG MD, Li ZOU MD, Chaoying WU MS, Yu HU MD, . Detection of maternal serum thromboxane B2 in different durations of pregnancy and prediction of preeclampsia[J]. Front. Med., 2010, 4(2): 235-240.
[14] Rong WANG, Shangwei WU, Xue LI, Ping HE, Yunde LIU. Detection of AmpC β-lactamase and drug resistance of Enterobacter cloacae[J]. Front Med Chin, 2009, 3(1): 72-75.
[15] Xiaohua PAN, Shuhua YANG, Deming XIAO, Yong DAI, Lili REN. Gene expression disparity in giant cell tumor of bone[J]. Front Med Chin, 2009, 3(1): 49-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed