Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2019, Vol. 13 Issue (6) : 730-740    https://doi.org/10.1007/s11684-019-0687-7
LETTER TO FRONTIERS OF MEDICINE
Expression status of GATA3 and mismatch repair proteins in upper tract urothelial carcinoma
Yue Wang1, Jinxia Zhang1, Yunfan Wang1, Shufang Wang1, Yu Zhang1, Qi Miao1, Fei Gao2, Huiying He2()
1. Department of Pathology, Peking University Shougang Hospital, Beijing 100144, China
2. Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100083, China
 Download: PDF(1592 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

GATA binding protein 3 (GATA3) and mismatch repair (MMR) deficiency contribute to the development of urothelial carcinoma. However, the combined expression of GATA3 and microsatellite instability (MSI) in upper tract urothelial carcinoma (UTUC) and its prognostic value have not been investigated. Here, we immunohistochemically stained GATA3 and MMR proteins in 108 UTUC samples. GATA3 was positive in 74 cases, and its expression was significantly lower than in adjacent benign urothelium (P<0.001). Loss of GATA3 expression was statistically associated with adverse clinicopathologic parameters, such as advanced stage, lymphovascular invasion, neural invasion, lymph node metastasis, and extensive necrosis. Cancer-specific survival (CSS, P=0.028) and disease-free survival (DFS, P=0.024) were significantly shorter in patients with GATA3 negative tumors than in patients with GATA3 positive tumors. The absence of MMR proteins was observed in 8.3% of the cases, and focal staining was identified in 13.0%. When using “lax criteria” which resulted in counting cases as negative where MMR staining was in fact focally positive (<5%), we found that GATA3 was inversely associated with MSI (P=0.005). Moreover, GATA3/microsatellite stability (MS) tumors were correlated with advanced pT stage (P<0.001) and poor outcome (P=0.019 for CSS, P=0.016 for DFS) compared with GATA3+/MSI ones. The GATA3/MSI cases had unfavorable clinical outcomes compared with GATA3+/MSI cases (P=0.008 for CSS, P=0.023 for DFS). This finding raises a question as to whether GATA3 interacts with MSI through the TGF-β signaling pathway and regulates UTUC progression.

Keywords upper tract urothelial carcinoma      GATA binding protein 3      mismatch repair      microsatellite instability      prognosis     
Corresponding Author(s): Huiying He   
Just Accepted Date: 11 March 2019   Online First Date: 22 April 2019    Issue Date: 16 December 2019
 Cite this article:   
Yue Wang,Jinxia Zhang,Yunfan Wang, et al. Expression status of GATA3 and mismatch repair proteins in upper tract urothelial carcinoma[J]. Front. Med., 2019, 13(6): 730-740.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-019-0687-7
https://academic.hep.com.cn/fmd/EN/Y2019/V13/I6/730
Variable n % Variable n %
Patient age Lymph node metastasis
<65 40 37.0 No 98 90.7
≥65 68 63.0 Yes 10 9.3
Sex Concurrent CIS
Male 62 57.4 No 93 86.1
Female 46 42.6 Yes 15 13.9
Laterality Extensive necrosis
Left 49 45.4 No 91 84.3
Right 58 53.7 Yes 17 15.7
Both 1 0.9 Glomerular sclerosis
Tumor site No 73 67.6
Renal pelvis 42 38.9 Yes 35 32.4
Ureter 55 50.9 Solitary or Multifocal
Transitional zone 10 9.3 Solitary 93 86.1
Renal pelvis& Ureter 1 0.9 Multifocal 15 13.9
Tumor size Bladder cancer
<3.0 cm 60 55.6 No 71 75.6
≥3.0 cm 48 44.4 Simultaneous 5 5.3
Tumor grade Postoperative 16 17.0
Low grade 14 13.0 Preoperative 2 2.1
High grade 94 87.0 Median follow-up time (month) 28
Pathological stage Status
pTa 14 13.0 Survival 66 70.2
pT1 29 26.8 Death 28 29.8
NMI (pTa+ pT1) 43 39.8 Cancer-specific survival
pT2 27 25.0 <1 year 19
pT3 29 26.9 1?3 years 41 69.4% a
pT4 9 8.3 >3 years 34
MI (pT2+ pT3+ pT4) 65 60.2 Disease-free survival
Lympho-vascular involvement <1 year 36
No 87 80.6 1?3 years 31 67.5% b
Yes 21 19.4 >3 years 27
Neural invasion
No 99 91.7
Yes 9 8.3
Tab.1  Patient characteristics at diagnosis
n MMR P
focal+ + − vs. focal+/+ −/focal+ vs. +
GATA3 34 5 8 21 0.136 0.005*
GATA3+ 74 4 6 64
Tab.2  Correlation of GATA3 and MMR proteins in UTUC
Fig.1  Representative staining of GATA3 and MMR proteins in UTUC. (A) Representative H&E images of UTUC. (B) Representative H&E images of normal urothelium. (C) Representative examples of positive staining of GATA3 in UTUC. (D) Representative examples of negative staining of GATA3 in UTUC. (E−L) Representative examples of positive (left panel) and negative (right panel) staining of MSH2, MSH6, MLH1, PMS2 in UTUC, respectively. Magnification, 100×.
UTUC, total = 108 MI UTUC, total = 65
n GATA3+ P MSI P n GATA3+ P MSI P
Patient age
<65 40 29 0.528 2 0.480 23 12 0.608 1 1.000
≥65 68 45 7 42 25 3
Sex
Male 62 43 0.837 4 0.491 37 20 0.622 2 1.000
Female 46 31 5 28 17 2
Laterality
Left 49 35 0.358 2 0.244 31 18 0.693 1 0.637
Right 58 39 7 33 19 3
Both 1 0 0 1 0 0
Tumor site
Renal pelvis 42 28 0.048* 5 0.478 25 14 0.331 2 1.000
Ureter 55 42 3 31 20 2
Transitional zone 10 4 1 8 3 0
Renal pelvis & Ureter 1 0 0 1 0 0
Tumor size
<3.0 cm 60 44 0.298 3 0.182 36 22 0.463 2 1.000
≥3.0 cm 48 30 6 29 15 2
Tumor grade
Low grade 14 10 1.000 1 1.000 1 0 0.431 0 1.000
High grade 94 64 8 64 37 4
Pathological stage
NMI (pTa?pT1) 43 37 0.001* 5 0.479 - - - -
MI (pT2?pT4) 65 37 4 - -
LVI
No 87 64 0.035* 7 1.000 46 29 0.170 2 0.574
Yes 21 10 2 19 8 2
Neural invasion
No 99 72 0.004* 7 0.164 56 35 0.032* 2 0.089
Yes 9 2 2 9 2 2
Lymph node metastasis
No 98 71 0.010* 9 1.000 55 34 0.086 4 1.000
Yes 10 3 0 10 3 0
Concurrent CIS
No 93 62 0.381 7 0.609 55 30 0.495 2 0.109
Yes 15 12 2 10 7 2
Extensive necrosis
No 91 69 <0.001* 8 1.000 48 32 0.011* 3 1.000
Yes 17 5 1 17 5 1
Glomerular sclerosis
No 73 53 0.268 7 0.715 45 25 0.792 4 0.303
Yes 35 21 2 20 12 0
Solitary or Multifocal
Solitary 93 65 0.550 7 0.609 52 30 1.000 2 0.176
Multifocal 15 9 2 13 7 2
Bladder cancera
No 61 46 0.653 6 0.612 37 25 0.164 2 1.000
Simultaneous 5 4 0 4 3 0
Postoperative 16 10 0 7 2 0
Preoperative 2 2 0 2 2 0
Tab.3  Association of clinicopathologic characteristics with GATA3 expression and MSI
Cancer-specific survival Disease-free survival
Univariate Multivariate Univariate Multivariate
HR 95%CI P HR 95%CI P HR 95%CI P HR 95%CI P
All cases (n = 108)
GATA3 0.441 0.208?0.935 0.028* 0.684 0.308?1.517 0.350 0.448 0.210?0.955 0.024* 0.751 0.326?1.731 0.502
MSI 0.744 0.176?3.143 0.688 ? ? ? 0.697 0.165?2.943 0.623 ? ? ?
Tumor Grade 25.684 0.244?2.699E3 0.031* 2.395E5 ? 0.975 25.217 0.220?2.890E3 0.028* 3.748E5 ? 0.980
pT stage 9.463 2.245?39.891 <0.001* 4.126 0.921?18.492 0.064 9.007 2.135?37.988 <0.001* 4.328 0.973?19.251 0.054
LVI 2.379 1.089?5.200 0.024* 1.307 0.585?2.919 0.514 2.345 1.082?5.086 0.019* 1.201 0.531?2.720 0.660
Neural invasion 1.994 0.687?5.787 0.194 ? ? ? 1.785 0.617?5.165 0.252 ? ? ?
LN metastasis 4.734 1.751?12.802 0.001* 1.680 0.554?5.094 0.359 3.793 1.422?10.123 0.002* 1.349 0.457?3.984 0.587
Concurrent CIS 0.883 0.305?2.554 0.817 ? ? ? 0.882 0.306?2.545 0.806 ? ? ?
Extensive necrosis 6.288 2.864?13.804 <0.001* 2.986 1.229?7.256 0.016* 5.410 2.424?12.074 <0.001* 2.682 1.068?6.733 0.036*
MI UTUC (n = 65)
GATA3 0.607 0.280?1.317 0.206 ? ? ? 0.622 0.284?1.362 0.235 ? ? ?
MSI 1.181 0.278?5.022 0.822 ? ? ? 1.026 0.242?4.346 0.972 ? ? ?
Tumor Grade 21.096 0.001?8.890E5 0.395 ? ? ? 21.110 0.000?1.089E6 0.378 ? ? ?
LVI 1.550 0.695?3.454 0.277 ? ? ? 1.626 0.737?3.587 0.185 ? ? ?
Neural invasion 1.178 0.402?3.447 0.764 ? ? ? 1.075 0.369?3.137 0.885 ? ? ?
LN metastasis 2.848 1.046?7.756 0.032* 1.498 0.489?4.590 0.479 0.418 0.155?1.123 0.047* 1.372 0.463?4.070 0.568
Concurrent CIS 0.971 0.333?2.831 0.957 ? ? ? 0.939 0.323?2.727 0.900 ? ? ?
Extensive necrosis 3.757 1.683?8.383 0.001* 3.310 1.355?8.087 0.009* 3.316 1.463?7.519 0.001* 2.990 1.212?7.377 0.017*
Tab.4  Univariate and multivariate analysis of cancer-specific survival and disease-free survival in patients with UTUC
Fig.2  Cancer-specific survival (A) and disease-free survival (B) according to different groups of GATA3 and MMR protein expression status.
Fig.3  Cancer-specific survival (A) and disease-free survival (B) comparing GATA3+/MSI and GATA3/MS groups.
Fig.4  Cancer-specific survival (A) and disease-free survival (B) analysis comparing GATA3+/MSI and GATA3/MSI groups.
1 RL Siegel, KD Miller, A Jemal. Cancer Statistics, 2017. CA Cancer J Clin 2017; 67(1): 7–30
https://doi.org/10.3322/caac.21387 pmid: 28055103
2 XP Chen, GY Xiong, XS Li, SF Matin, M Garcia, D Fang, TY Wang, W Yu, K Gong, Y Song, ZS He, Q He, LQ Zhou. Predictive factors for worse pathological outcomes of upper tract urothelial carcinoma: experience from a nationwide high-volume centre in China. BJU Int 2013; 112(7): 917–924
https://doi.org/10.1111/bju.12238 pmid: 23905945
3 N Singla, D Fang, X Su, Z Bao, Z Cao, SM Jafri, G Xiong, L Zhang, R Hutchinson, A Sagalowsky, Y Lotan, X Li, L Zhou, JD Raman, V Margulis. A multi-institutional comparison of clinicopathologic characteristics and oncologic outcomes of upper tract urothelial carcinoma in China and the United States. J Urol 2017; 197(5): 1208–1213
https://doi.org/10.1016/j.juro.2016.11.094 pmid: 27887951
4 G Xiong, J Liu, Q Tang, Y Fan, D Fang, K Yang, F Xie, M Zhang, L Zhang, L Liu, C Zhang, L Yao, L Yang, W Ci, W Zhao, Y Gong, Q He, K Gong, Z He, G Wang, X Li, Y Guo, L Zhou. Prognostic and predictive value of epigenetic biomarkers and clinical factors in upper tract urothelial carcinoma. Epigenomics 2015; 7(5): 733–744
https://doi.org/10.2217/epi.15.34 pmid: 25912368
5 IC Ho, P Vorhees, N Marin, BK Oakley, SF Tsai, SH Orkin, JM Leiden. Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J 1991; 10(5): 1187–1192
https://doi.org/10.1002/j.1460-2075.1991.tb08059.x pmid: 1827068
6 ML Asselin-Labat, KD Sutherland, H Barker, R Thomas, M Shackleton, NC Forrest, L Hartley, L Robb, FG Grosveld, J van der Wees, GJ Lindeman, JE Visvader. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 2007; 9(2): 201–209
https://doi.org/10.1038/ncb1530 pmid: 17187062
7 RS Gonzalez, J Wang, T Kraus, H Sullivan, AL Adams, C Cohen. GATA-3 expression in male and female breast cancers: comparison of clinicopathologic parameters and prognostic relevance. Hum Pathol 2013; 44(6): 1065–1070
https://doi.org/10.1016/j.humpath.2012.09.010 pmid: 23266442
8 JP Higgins, G Kaygusuz, L Wang, K Montgomery, V Mason, SX Zhu, RJ Marinelli, JC Presti Jr, M van de Rijn, JD Brooks. Placental S100 (S100P) and GATA3: markers for transitional epithelium and urothelial carcinoma discovered by complementary DNA microarray. Am J Surg Pathol 2007; 31(5): 673–680
https://doi.org/10.1097/01.pas.0000213438.01278.5f pmid: 17460449
9 Y Li, H Ishiguro, T Kawahara, E Kashiwagi, K Izumi, H Miyamoto. Loss of GATA3 in bladder cancer promotes cell migration and invasion. Cancer Biol Ther 2014; 15(4): 428–435
https://doi.org/10.4161/cbt.27631 pmid: 24448324
10 J Sun, H He, S Pillai, Y Xiong, S Challa, L Xu, S Chellappan, S Yang. GATA3 transcription factor abrogates Smad4 transcription factor-mediated fascin overexpression, invadopodium formation, and breast cancer cell invasion. J Biol Chem 2013; 288(52): 36971–36982
https://doi.org/10.1074/jbc.M113.506535 pmid: 24235142
11 NF de Miranda, M van Dinther, BE van den Akker, T van Wezel, P ten Dijke, H Morreau. Transforming growth factor b signaling in colorectal cancer cells with microsatellite instability despite biallelic mutations in TGFBR2. Gastroenterology 2015; 148(7): 1427–37.e8
https://doi.org/10.1053/j.gastro.2015.02.052 pmid: 25736321
12 N Amira, J Rivet, H Soliman, G Cancel-Tassin, A Le Duc, A Janin, O Cussenot. Microsatellite instability in urothelial carcinoma of the upper urinary tract. J Urol 2003; 170(4 Pt 1): 1151–1154
https://doi.org/10.1097/01.ju.0000086551.22844.cd pmid: 14501713
13 SC Skeldon, K Semotiuk, M Aronson, S Holter, S Gallinger, A Pollett, C Kuk, B van Rhijn, P Bostrom, Z Cohen, NE Fleshner, MA Jewett, S Hanna, SF Shariat, TH Van Der Kwast, A Evans, J Catto, B Bapat, AR Zlotta. Patients with Lynch syndrome mismatch repair gene mutations are at higher risk for not only upper tract urothelial cancer but also bladder cancer. Eur Urol 2013; 63(2): 379–385
https://doi.org/10.1016/j.eururo.2012.07.047 pmid: 22883484
14 E Mylona, A Zarogiannos, A Nomikos, I Giannopoulou, I Nikolaou, A Zervas, L Nakopoulou. Prognostic value of microsatellite instability determined by immunohistochemical staining of hMSH2 and hMSH6 in urothelial carcinoma of the bladder. APMIS 2008; 116(1): 59–65
https://doi.org/10.1111/j.1600-0463.2008.00760.x pmid: 18254781
15 MA Rubin, R Dunn, M Strawderman, KJ Pienta. Tissue microarray sampling strategy for prostate cancer biomarker analysis. Am J Surg Pathol 2002; 26(3): 312–319
https://doi.org/10.1097/00000478-200203000-00004 pmid: 11859202
16 S Inoue, T Mizushima, K Fujita, A Meliti, H Ide, S Yamaguchi, H Fushimi, GJ Netto, N Nonomura, H Miyamoto. GATA3 immunohistochemistry in urothelial carcinoma of the upper urinary tract as a urothelial marker and a prognosticator. Hum Pathol 2017; 64: 83–90
https://doi.org/10.1016/j.humpath.2017.04.003 pmid: 28428106
17 E Mangold, C Pagenstecher, W Friedl, HP Fischer, S Merkelbach-Bruse, M Ohlendorf, N Friedrichs, S Aretz, R Buettner, P Propping, M Mathiak. Tumours from MSH2 mutation carriers show loss of MSH2 expression but many tumours from MLH1 mutation carriers exhibit weak positive MLH1 staining. J Pathol 2005; 207(4): 385–395
https://doi.org/10.1002/path.1858 pmid: 16216036
18 P Joost, N Veurink, S Holck, L Klarskov, A Bojesen, M Harbo, B Baldetorp, E Rambech, M Nilbert. Heterogenous mismatch-repair status in colorectal cancer. Diagn Pathol 2014; 9(1): 126–135
https://doi.org/10.1186/1746-1596-9-126 pmid: 24968821
19 C Seitz, A Gupta, SF Shariat, K Matsumoto, W Kassouf, TJ Walton, HM Fritsche, W Otto, S Tritschler, PJ Bastian, J Carballido, V Ficarra, PI Karakiewicz, W Artibani, G Mazzoleni, G Novara. Association of tumor necrosis with pathological features and clinical outcome in 754 patients undergoing radical nephroureterectomy for upper tract urothelial carcinoma: an international validation study. J Urol 2010; 184(5): 1895–1900
https://doi.org/10.1016/j.juro.2010.06.106 pmid: 20846680
20 GP Paner, C Annaiah, C Gulmann, P Rao, JY Ro, DE Hansel, SS Shen, A Lopez-Beltran, M Aron, DJ Luthringer, M De Peralta-Venturina, Y Cho, MB Amin. Immunohistochemical evaluation of novel and traditional markers associated with urothelial differentiation in a spectrum of variants of urothelial carcinoma of the urinary bladder. Hum Pathol 2014; 45(7): 1473–1482
https://doi.org/10.1016/j.humpath.2014.02.024 pmid: 24780825
21 S Bai, AL Nunez, S Wei, A Ziober, Y Yao, JE Tomaszewski, Z Bing. Microsatellite instability and TARBP2 mutation study in upper urinary tract urothelial carcinoma. Am J Clin Pathol 2013; 139(6): 765–770
https://doi.org/10.1309/AJCPBSLP8XHSWLOW pmid: 23690119
22 K Inamura. Bladder cancer: new insights into its molecular pathology. Cancers (Basel) 2018; 10(4): 100
https://doi.org/10.3390/cancers10040100 pmid: 29614760
23 JI Warrick, V Walter, H Yamashita, E Chung, L Shuman, VO Amponsa, Z Zheng, W Chan, TL Whitcomb, F Yue, T Iyyanki, YI Kawasawa, M Kaag, W Guo, JD Raman, JS Park, DJ DeGraff. FOXA1, GATA3 and PPARγ cooperate to drive luminal subtype in bladder cancer: a molecular analysis of established human cell lines. Sci Rep 2016; 6(1): 38531
https://doi.org/10.1038/srep38531 pmid: 27924948
24 V Dadhania, M Zhang, L Zhang, J Bondaruk, T Majewski, A Siefker-Radtke, CC Guo, C Dinney, DE Cogdell, S Zhang, S Lee, JG Lee, JN Weinstein, K Baggerly, D McConkey, B Czerniak. Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use. EBioMedicine 2016; 12: 105–117
https://doi.org/10.1016/j.ebiom.2016.08.036 pmid: 27612592
25 IB Bahria-Sediki, N Yousfi, C Paul, M Chebil, M Cherif, R Zermani, AB El Gaaied, A Bettaieb. Clinical significance of T-bet, GATA-3, and Bcl-6 transcription factor expression in bladder carcinoma. J Transl Med 2016; 14(1): 144–154
https://doi.org/10.1186/s12967-016-0891-z pmid: 27237631
26 B Shi, B Su, D Fang, Y Tang, G Xiong, Z Guo, Q He, X Yang, W Zhao, Y Guo, X Li, L Zhou. High expression of KPNA2 defines poor prognosis in patients with upper tract urothelial carcinoma treated with radical nephroureterectomy. BMC Cancer 2015; 15(1): 380–391
https://doi.org/10.1186/s12885-015-1369-8 pmid: 25956057
27 F Du, P Yuan, T Wang, J Zhao, Z Zhao, Y Luo, B Xu. The significance and therapeutic potential of GATA3 expression and mutation in breast cancer: a systematic review. Med Res Rev 2015; 35(6): 1300–1315
https://doi.org/10.1002/med.21362 pmid: 26313026
28 A García-Tello, F Ramón de Fata, G Andrés, S Ropero, JI López, JC Angulo. DNA repair genes and prognosis in sporadic forms of urothelial carcinoma of the upper urinary tract. Actas Urol Esp 2014; 38(9): 600–607
https://doi.org/10.1016/j.acuroe.2014.09.005 pmid: 24958312
29 HL Harper, JK McKenney, B Heald, A Stephenson, SC Campbell, T Plesec, C Magi-Galluzzi. Upper tract urothelial carcinomas: frequency of association with mismatch repair protein loss and lynch syndrome. Mod Pathol 2017; 30(1): 146–156
https://doi.org/10.1038/modpathol.2016.171 pmid: 27713421
30 Q Li, A Bagrodia, EK Cha, JA Coleman. Prognostic genetic signatures in upper rract urothelial carcinoma. Curr Urol Rep 2016; 17(2): 12–22
https://doi.org/10.1007/s11934-015-0566-y pmid: 26757906
31 M Rouprêt, G Fromont, AR Azzouzi, JW Catto, G Vallancien, FC Hamdy, O Cussenot. Microsatellite instability as predictor of survival in patients with invasive upper urinary tract transitional cell carcinoma. Urology 2005; 65(6): 1233–1237
https://doi.org/10.1016/j.urology.2005.01.019 pmid: 15922421
32 R Parsons, LL Myeroff, B Liu, JK Willson, SD Markowitz, KW Kinzler, B Vogelstein. Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Res 1995; 55(23): 5548–5550
pmid: 7585632
33 J Lee, S Ballikaya, K Schönig, CR Ball, H Glimm, J Kopitz, J Gebert. Transforming growth factor β receptor 2 (TGFBR2) changes sialylation in the microsatellite unstable (MSI) Colorectal cancer cell line HCT116. PLoS One 2013; 8(2): e57074
https://doi.org/10.1371/journal.pone.0057074 pmid: 23468914
[1] Huanping Wang, Haitao Meng, Jinghan Wang, Yinjun Lou, Yile Zhou, Peipei Lin, Fenglin Li, Lin Liu, Huan Xu, Min Yang, Jie Jin. Clinical characteristics and prognostic values of 1p32.3 deletion detected through fluorescence in situ hybridization in patients with newly diagnosed multiple myeloma: a single-center study in China[J]. Front. Med., 2020, 14(3): 327-334.
[2] Yanfei Zhang, Xinchun Zhao, Yongchun Zhou, Min Wang, Guangbiao Zhou. Identification of an E3 ligase-encoding gene RFWD3 in non-small cell lung cancer[J]. Front. Med., 2020, 14(3): 318-326.
[3] Anqi Chen, Suhua Zhang, Jixi Li, Chaoneng Ji, Jinzhong Chen, Chengtao Li. Detecting genetic hypermutability of gastrointestinal tumor by using a forensic STR kit[J]. Front. Med., 2020, 14(1): 101-111.
[4] Wenjing Wang, Shigang Ding, Hejun Zhang, Jun Li, Jun Zhan, Hongquan Zhang. G protein-coupled receptor LGR6 is an independent risk factor for colon adenocarcinoma[J]. Front. Med., 2019, 13(4): 482-491.
[5] Weiqi Rong, Yang Zhang, Lei Yang, Lin Feng, Baojun Wei, Fan Wu, Liming Wang, Yanning Gao, Shujun Cheng, Jianxiong Wu, Ting Xiao. Post-surgical resection prognostic value of combined OPN, MMP7, and PSG9 plasma biomarkers in hepatocellular carcinoma[J]. Front. Med., 2019, 13(2): 250-258.
[6] Yiwen Cao, Zhenhua Liu, Wen Wu, Ying Qian, Qin Shi, Rong Shen, Binshen Ouyang, Pengpeng Xu, Shu Cheng, Jin Ye, Yiming Lu, Chaofu Wang, Chengde Yang, Li Wang, Weili Zhao. Presence of multiple abnormal immunologic markers is an independent prognostic factor of diffuse large B-cell lymphoma[J]. Front. Med., 2019, 13(1): 94-103.
[7] Jing Yue, Bo Zhang, Mingyue Wang, Junning Yao, Yifan Zhou, Ding Ma, Lei Jin. Effect of antitubercular treatment on the pregnancy outcomes and prognoses of patients with genital tuberculosis[J]. Front. Med., 2019, 13(1): 121-125.
[8] Bin Yang, Yan Yu, Jing Chen, Yan Zhang, Ye Yin, Nan Yu, Ge Chen, Shifei Zhu, Haiyan Huang, Yongqun Yuan, Jihui Ai, Xinyu Wang, Kezhen Li. Possibility of women treated with fertility-sparing surgery for non-epithelial ovarian tumors to safely and successfully become pregnant---a Chinese retrospective cohort study among 148 cases[J]. Front. Med., 2018, 12(5): 509-517.
[9] Sasa Nie, Zhe Feng, Lihua Xia, Jiuxu Bai, Fenglin Xiao, Jian Liu, Li Tang, Xiangmei Chen. Risk factors of prognosis after acute kidney injury in hospitalized patients[J]. Front. Med., 2017, 11(3): 393-402.
[10] Changlin Cao, Jingxian Gu, Jingyao Zhang. Soluble triggering receptor expressed on myeloid cell-1 (sTREM-1): a potential biomarker for the diagnosis of infectious diseases[J]. Front. Med., 2017, 11(2): 169-177.
[11] Lei Huang,Aman Xu. Detection of digestive malignancies and post-gastrectomy complications via gastrointestinal fluid examination[J]. Front. Med., 2017, 11(1): 20-31.
[12] Xinsen Xu,Yanyan Zhou,Runchen Miao,Wei Chen,Kai Qu,Qing Pang,Chang Liu. Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis[J]. Front. Med., 2016, 10(2): 183-190.
[13] Zhi Xu,Chunxiang Cao,Haiyan Xia,Shujing Shi,Lingzhi Hong,Xiaowei Wei,Dongying Gu,Jianmin Bian,Zijun Liu,Wenbin Huang,Yixin Zhang,Song He,Nikki Pui-Yue Lee,Jinfei Chen. Protein phosphatase magnesium-dependent 1δ is a novel tumor marker and target in hepatocellular carcinoma[J]. Front. Med., 2016, 10(1): 52-60.
[14] Aixiu Qiao,Feng Gu,Xiaojing Guo,Xinmin Zhang,Li Fu. Breast cancer-associated fibroblasts: their roles in tumor initiation, progression and clinical applications[J]. Front. Med., 2016, 10(1): 33-40.
[15] Jing Zhang,Shan Gao,Zhongping Duan,Ke-Qin Hu. Overview on acute-on-chronic liver failure[J]. Front. Med., 2016, 10(1): 1-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed