Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (1) : 144-154    https://doi.org/10.1007/s11684-020-0792-7
RESEARCH ARTICLE
Effects of vitrification and cryostorage duration on single-cell RNA-Seq profiling of vitrified-thawed human metaphase II oocytes
Ying Huo1,2,3,4, Peng Yuan1,3,4, Qingyuan Qin1,3,4, Zhiqiang Yan1,3,4,5, Liying Yan1,3,4,6, Ping Liu1,3,4, Rong Li1,3,4,6, Jie Yan1,3,4(), Jie Qiao1,3,4,5,6
1. Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
2. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
3. Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
4. Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
5. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
6. National Clinical Research Center of Obstetrics and Gynecology, Beijing 100191, China
 Download: PDF(2106 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Oocyte cryopreservation is widely used for clinical and social reasons. Previous studies have demonstrated that conventional slow-freezing cryopreservation procedures, but not storage time, can alter the gene expression profiles of frozen oocytes. Whether vitrification procedures and the related frozen storage durations have any effects on the transcriptomes of human metaphase II oocytes remain unknown. Four women (30–32 years old) who had undergone IVF treatment were recruited for this study. RNA-Seq profiles of 3 fresh oocytes and 13 surviving vitrified-thawed oocytes (3, 3, 4, and 3 oocytes were cryostored for 1, 2, 3, and 12 months) were analyzed at a single-cell resolution. A total of 1987 genes were differentially expressed in the 13 vitrified-thawed oocytes. However, no differentially expressed genes were found between any two groups among the 1-, 2-, 3-, and 12-month storage groups. Further analysis revealed that the aberrant genes in the vitrified oocytes were closely related to oogenesis and development. Our findings indicated that the effects of vitrification on the transcriptomes of mature human oocytes are induced by the procedure itself, suggesting that long-term cryostorage of human oocytes is safe.

Keywords human metaphase II oocyte      vitrification      cryostorage duration      single-cell RNA-Seq      lncRNA     
Corresponding Author(s): Jie Yan   
Just Accepted Date: 10 July 2020   Online First Date: 01 September 2020    Issue Date: 11 February 2021
 Cite this article:   
Ying Huo,Peng Yuan,Qingyuan Qin, et al. Effects of vitrification and cryostorage duration on single-cell RNA-Seq profiling of vitrified-thawed human metaphase II oocytes[J]. Front. Med., 2021, 15(1): 144-154.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0792-7
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I1/144
Fig.1  Quality control of the RNA-Seq data and pairwise comparisons between cryopreserved groups. (A) PCA of the transcriptomes of single human oocytes. Oocytes with the same cryostorage duration are indicated with symbols of the same shape. PC1 and PC2 represent the top two dimensions of the genes showing differential expression among these oocytes. (B) Relative median TIN of single human oocytes. The median TIN of each single cell was divided by the average median TIN of fresh MII oocytes. (C) Pairwise comparisons between two groups among the 1-, 2-, 3-, and 12-month cryostorage groups.
Fig.2  Differentially expressed genes between fresh and cryopreserved human MII oocytes. (A) Heatmap of the differentially expressed genes between fresh and cryopreserved oocytes. The expression level of each gene was normalized using the Z-score. (B) Enriched GO terms of the downregulated genes in cryopreserved oocytes. (C) Enriched GO terms of the upregulated genes in cryopreserved oocytes. (D) Enriched KEGG pathways of the downregulated genes in cryopreserved oocytes. (E) Enriched KEGG pathways of the upregulated genes in cryopreserved oocytes.
Fig.3  Differentially expressed genes between fresh oocytes and cryopreserved oocytes in four groups. (A) Scatter plot of the average gene expression between fresh and cryopreserved oocytes. Downregulated genes in cryopreserved oocytes are shown in red, upregulated genes are depicted in green, and stably expressed genes are presented in black. (B) Venn diagram of the common downregulated genes in the four cryopreserved groups in comparison with the fresh group. (C) Venn diagram of the common upregulated genes in the four cryopreserved groups in comparison with the fresh group. (D) Enriched GO terms of the 52 common downregulated genes among the four cryopreserved groups.
Fig.4  Expression patterns of lncRNAs among fresh and cryopreserved human MII oocytes. (A) Unsupervised hierarchical clustering of the lncRNA expression profiles of 16 samples. (B) Heatmap of the differentially expressed lncRNAs between fresh and cryopreserved oocytes. Z-scores with colors from blue to red indicate the expression levels from low to high. (C) Scatter plot of lncRNA expression between the fresh oocyte group and the 1-, 2-, 3-, and 12-month cryopreserved groups. (D) Venn diagram of the commonly downregulated lncRNAs in the four cryopreserved groups in comparison with the control group. (E) Scatter plot of the average gene expression between two groups among the 1-, 2-, 3-, and 12-month groups.
1 L Zhang, LY Yan, X Zhi, J Yan, J Qiao. Female fertility: is it safe to “freeze?” Chin Med J (Engl) 2015; 128(3): 390–397
https://doi.org/10.4103/0366-6999.150115 pmid: 25635437
2 K Harwood. Egg freezing: a breakthrough for reproductive autonomy? Bioethics 2009; 23(1): 39–46
https://doi.org/10.1111/j.1467-8519.2008.00680.x pmid: 18945249
3 R Homburg, F van der Veen, SJ Silber. Oocyte vitrification—women’s emancipation set in stone. Fertil Steril 2009; 91(4 Suppl): 1319–1320
https://doi.org/10.1016/j.fertnstert.2008.02.127 pmid: 18410931
4 CE Argyle, JC Harper, MC Davies. Oocyte cryopreservation: where are we now? Hum Reprod Update 2016; 22(4): 440–449
https://doi.org/10.1093/humupd/dmw007 pmid: 27006004
5 E Stehlik, J Stehlik, KP Katayama, M Kuwayama, V Jambor, R Brohammer, O Kato. Vitrification demonstrates significant improvement versus slow freezing of human blastocysts. Reprod Biomed Online 2005; 11(1): 53–57
https://doi.org/10.1016/S1472-6483(10)61298-9 pmid: 16102287
6 GD Smith, PC Serafini, J Fioravanti, I Yadid, M Coslovsky, P Hassun, JR Alegretti, EL Motta. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification. Fertil Steril 2010; 94(6): 2088–2095
https://doi.org/10.1016/j.fertnstert.2009.12.065 pmid: 20171613
7 PE Levi Setti, E Porcu, P Patrizio, V Vigiliano, R de Luca, P d’Aloja, R Spoletini, G Scaravelli. Human oocyte cryopreservation with slow freezing versus vitrification. Results from the National Italian Registry data, 2007–2011. Fertil Steril 2014; 102(1): 90–95.e2
https://doi.org/10.1016/j.fertnstert.2014.03.052 pmid: 24794316
8 S Stigliani, S Moretti, P Anserini, I Casciano, PL Venturini, P Scaruffi. Storage time does not modify the gene expression profile of cryopreserved human metaphase II oocytes. Hum Reprod 2015; 30(11): 2519–2526
https://doi.org/10.1093/humrep/dev232 pmid: 26385790
9 L Kuleshova, L Gianaroli, C Magli, A Ferraretti, A Trounson. Birth following vitrification of a small number of human oocytes: case report. Hum Reprod 1999; 14(12): 3077–3079
https://doi.org/10.1093/humrep/14.12.3077 pmid: 10601099
10 L Zhang, X Xue, J Yan, LY Yan, XH Jin, XH Zhu, ZZ He, J Liu, R Li, J Qiao. L-proline: a highly effective cryoprotectant for mouse oocyte vitrification. Sci Rep 2016; 6(1): 26326
https://doi.org/10.1038/srep26326 pmid: 27412080
11 DK Gardner, CB Sheehan, L Rienzi, M Katz-Jaffe, MG Larman. Analysis of oocyte physiology to improve cryopreservation procedures. Theriogenology 2007; 67(1): 64–72
https://doi.org/10.1016/j.theriogenology.2006.09.012 pmid: 17049589
12 DA Gook, SM Osborn, WI Johnston. Cryopreservation of mouse and human oocytes using 1,2-propanediol and the configuration of the meiotic spindle. Hum Reprod 1993; 8(7): 1101–1109
https://doi.org/10.1093/oxfordjournals.humrep.a138201 pmid: 8408494
13 MT Zenzes, R Bielecki, RF Casper, SP Leibo. Effects of chilling to 0 °C on the morphology of meiotic spindles in human metaphase II oocytes. Fertil Steril 2001; 75(4): 769–777
https://doi.org/10.1016/S0015-0282(00)01800-8 pmid: 11287033
14 L Rienzi, F Martinez, F Ubaldi, MG Minasi, M Iacobelli, J Tesarik, E Greco. Polscope analysis of meiotic spindle changes in living metaphase II human oocytes during the freezing and thawing procedures. Hum Reprod 2004; 19(3): 655–659
https://doi.org/10.1093/humrep/deh101 pmid: 14998966
15 Y Ghetler, E Skutelsky, I Ben Nun, L Ben Dor, D Amihai, R Shalgi. Human oocyte cryopreservation and the fate of cortical granules. Fertil Steril 2006; 86(1): 210–216
https://doi.org/10.1016/j.fertnstert.2005.12.061 pmid: 16756978
16 V Bianchi, G Macchiarelli, A Borini, M Lappi, S Cecconi, S Miglietta, G Familiari, SA Nottola. Fine morphological assessment of quality of human mature oocytes after slow freezing or vitrification with a closed device: a comparative analysis. Reprod Biol Endocrinol 2014; 12(1): 110
https://doi.org/10.1186/1477-7827-12-110 pmid: 25421073
17 S Succu, D Bebbere, L Bogliolo, F Ariu, S Fois, GG Leoni, F Berlinguer, S Naitana, S Ledda. Vitrification of in vitro matured ovine oocytes affects in vitro pre-implantation development and mRNA abundance. Mol Reprod Dev 2008; 75(3): 538–546
https://doi.org/10.1002/mrd.20784 pmid: 17886274
18 VM Anchamparuthy, RE Pearson, FC Gwazdauskas. Expression pattern of apoptotic genes in vitrified-thawed bovine oocytes. Reprod Domest Anim 2010; 45(5): e83–e90
pmid: 19821945
19 B Turathum, K Saikhun, P Sangsuwan, Y Kitiyanant. Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes. Reprod Biol Endocrinol 2010; 8(1): 70
https://doi.org/10.1186/1477-7827-8-70 pmid: 20565987
20 A Habibi, N Farrokhi, F Moreira da Silva, BF Bettencourt, J Bruges-Armas, F Amidi, A Hosseini. The effects of vitrification on gene expression in mature mouse oocytes by nested quantitative PCR. J Assist Reprod Genet 2010; 27(11): 599–604
https://doi.org/10.1007/s10815-010-9453-0 pmid: 20714800
21 C Di Pietro, M Vento, MR Guglielmino, P Borzì, M Santonocito, M Ragusa, D Barbagallo, LR Duro, A Majorana, A De Palma, MR Garofalo, E Minutolo, P Scollo, M Purrello. Molecular profiling of human oocytes after vitrification strongly suggests that they are biologically comparable with freshly isolated gametes. Fertil Steril 2010; 94(7): 2804–2807
https://doi.org/10.1016/j.fertnstert.2010.04.060 pmid: 20542504
22 C Monzo, D Haouzi, K Roman, S Assou, H Dechaud, S Hamamah. Slow freezing and vitrification differentially modify the gene expression profile of human metaphase II oocytes. Hum Reprod 2012; 27(7): 2160–2168
https://doi.org/10.1093/humrep/des153 pmid: 22587994
23 S Chamayou, G Bonaventura, C Alecci, D Tibullo, F Di Raimondo, A Guglielmino, ML Barcellona. Consequences of metaphase II oocyte cryopreservation on mRNA content. Cryobiology 2011; 62(2): 130–134
https://doi.org/10.1016/j.cryobiol.2011.01.014 pmid: 21272569
24 MG Larman, MG Katz-Jaffe, CB Sheehan, DK Gardner. 1,2-propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology. Hum Reprod 2007; 22(1): 250–259
https://doi.org/10.1093/humrep/del319 pmid: 16905767
25 MG Katz-Jaffe, MG Larman, CB Sheehan, DK Gardner. Exposure of mouse oocytes to 1,2-propanediol during slow freezing alters the proteome. Fertil Steril 2008; 89(5 Suppl): 1441–1447
https://doi.org/10.1016/j.fertnstert.2007.03.098 pmid: 17980362
26 K Oktay, AP Cil, H Bang. Efficiency of oocyte cryopreservation: a meta-analysis. Fertil Steril 2006; 86(1): 70–80
https://doi.org/10.1016/j.fertnstert.2006.03.017 pmid: 16818031
27 A Borini, G Coticchio. The efficacy and safety of human oocyte cryopreservation by slow cooling. Semin Reprod Med 2009; 27(6): 443–449
https://doi.org/10.1055/s-0029-1241053 pmid: 19806512
28 F Ubaldi, R Anniballo, S Romano, E Baroni, L Albricci, S Colamaria, A Capalbo, F Sapienza, G Vajta, L Rienzi. Cumulative ongoing pregnancy rate achieved with oocyte vitrification and cleavage stage transfer without embryo selection in a standard infertility program. Hum Reprod 2010; 25(5): 1199–1205
https://doi.org/10.1093/humrep/deq046 pmid: 20185513
29 A Cobo, C Diaz. Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril 2011; 96(2): 277–285
https://doi.org/10.1016/j.fertnstert.2011.06.030 pmid: 21718983
30 L Rienzi, A Cobo, A Paffoni, C Scarduelli, A Capalbo, G Vajta, J Remohí, G Ragni, FM Ubaldi. Consistent and predictable delivery rates after oocyte vitrification: an observational longitudinal cohort multicentric study. Hum Reprod 2012; 27(6): 1606–1612
https://doi.org/10.1093/humrep/des088 pmid: 22442248
31 L Yan, M Yang, H Guo, L Yang, J Wu, R Li, P Liu, Y Lian, X Zheng, J Yan, J Huang, M Li, X Wu, L Wen, K Lao, R Li, J Qiao, F Tang. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 2013; 20(9): 1131–1139
https://doi.org/10.1038/nsmb.2660 pmid: 23934149
32 F Tang, C Barbacioru, E Nordman, B Li, N Xu, VI Bashkirov, K Lao, MA Surani. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc 2010; 5(3): 516–535
https://doi.org/10.1038/nprot.2009.236 pmid: 20203668
33 F Zhou, X Li, W Wang, P Zhu, J Zhou, W He, M Ding, F Xiong, X Zheng, Z Li, Y Ni, X Mu, L Wen, T Cheng, Y Lan, W Yuan, F Tang, B Liu. Tracing haematopoietic stem cell formation at single-cell resolution. Nature 2016; 533(7604): 487–492
https://doi.org/10.1038/nature17997 pmid: 27225119
34 YX Cao, Q Xing, L Li, L Cong, ZG Zhang, ZL Wei, P Zhou. Comparison of survival and embryonic development in human oocytes cryopreserved by slow-freezing and vitrification. Fertil Steril 2009; 92(4): 1306–1311
https://doi.org/10.1016/j.fertnstert.2008.08.069 pmid: 18930218
35 R Fadini, F Brambillasca, MM Renzini, M Merola, R Comi, E De Ponti, MB Dal Canto. Human oocyte cryopreservation: comparison between slow and ultrarapid methods. Reprod Biomed Online 2009; 19(2): 171–180
https://doi.org/10.1016/S1472-6483(10)60069-7 pmid: 19712551
36 DH Edgar, DA Gook. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum Reprod Update 2012; 18(5): 536–554
https://doi.org/10.1093/humupd/dms016 pmid: 22537859
37 L Parmegiani, C Garello, F Granella, D Guidetti, S Bernardi, GE Cognigni, A Revelli, M Filicori. Long-term cryostorage does not adversely affect the outcome of oocyte thawing cycles. Reprod Biomed Online 2009; 19(3): 374–379
https://doi.org/10.1016/S1472-6483(10)60171-X pmid: 19778482
38 KN Goldman, Y Kramer, B Hodes-Wertz, N Noyes, C McCaffrey, JA Grifo. Long-term cryopreservation of human oocytes does not increase embryonic aneuploidy. Fertil Steril 2015; 103(3): 662–668
https://doi.org/10.1016/j.fertnstert.2014.11.025 pmid: 25542819
39 SB Qian, H McDonough, F Boellmann, DM Cyr, C Patterson. CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 2006; 440(7083): 551–555
https://doi.org/10.1038/nature04600 pmid: 16554822
40 YJ Chen, KC Lai, HH Kuo, LP Chow, LH Yih, TC Lee. HSP70 colocalizes with PLK1 at the centrosome and disturbs spindle dynamics in cells arrested in mitosis by arsenic trioxide. Arch Toxicol 2014; 88(9): 1711–1723
https://doi.org/10.1007/s00204-014-1222-x pmid: 24623308
41 CT Fang, HH Kuo, TS Pan, FC Yu, LH Yih. HSP70 regulates the function of mitotic centrosomes. Cell Mol Life Sci 2016; 73(20): 3949–3960
https://doi.org/10.1007/s00018-016-2236-8 pmid: 27137183
42 A Kishor, EJF White, AE Matsangos, Z Yan, B Tandukar, GM Wilson. Hsp70’s RNA-binding and mRNA-stabilizing activities are independent of its protein chaperone functions. J Biol Chem 2017; 292(34): 14122–14133
https://doi.org/10.1074/jbc.M117.785394 pmid: 28679534
43 M Mišunová, T Svitálková, L Pleštilová, O Kryštufková, D Tegzová, R Svobodová, M Hušáková, M Tomčík, R Bečvář, J Závada, H Mann, L Kolesár, A Slavčev, J Vencovský, P Novota. Molecular markers of systemic autoimmune disorders: the expression of MHC-located HSP70 genes is significantly associated with autoimmunity development. Clin Exp Rheumatol 2017; 35(1): 33–42
pmid: 28032847
44 S Takahashi, G Andreoletti, R Chen, Y Munehira, A Batra, NA Afzal, RM Beattie, JA Bernstein, S Ennis, M Snyder. De novo and rare mutations in the HSPA1L heat shock gene associated with inflammatory bowel disease. Genome Med 2017; 9(1): 8
https://doi.org/10.1186/s13073-016-0394-9 pmid: 28126021
45 F Le Masson, E Christians. HSFs and regulation of Hsp70.1 (Hspa1b) in oocytes and preimplantation embryos: new insights brought by transgenic and knockout mouse models. Cell Stress Chaperones 2011; 16(3): 275–285
https://doi.org/10.1007/s12192-010-0239-1 pmid: 21053113
46 JM Lelièvre, N Peynot, S Ruffini, L Laffont, D Le Bourhis, PM Girard, V Duranthon. Regulation of heat-inducible HSPA1A gene expression during maternal-to-embryo transition and in response to heat in in vitro-produced bovine embryos. Reprod Fertil Dev 2017; 29(9): 1868–1881
https://doi.org/10.1071/RD15504 pmid: 27851888
47 C Schumacher, H Wang, C Honer, W Ding, J Koehn, Q Lawrence, CM Coulis, LL Wang, D Ballinger, BR Bowen, S Wagner. The SCAN domain mediates selective oligomerization. J Biol Chem 2000; 275(22): 17173–17179
https://doi.org/10.1074/jbc.M000119200 pmid: 10747874
48 LC Edelstein, T Collins. The SCAN domain family of zinc finger transcription factors. Gene 2005; 359: 1–17
https://doi.org/10.1016/j.gene.2005.06.022 pmid: 16139965
49 FR Carneiro, TC Silva, AC Alves, T Haline-Vaz, FC Gozzo, NI Zanchin. Spectroscopic characterization of the tumor antigen NY-REN-21 and identification of heterodimer formation with SCAND1. Biochem Biophys Res Commun 2006; 343(1): 260–268
https://doi.org/10.1016/j.bbrc.2006.02.140 pmid: 16540086
50 T Oka, M Krieger. Multi-component protein complexes and Golgi membrane trafficking. J Biochem 2005; 137(2): 109–114
https://doi.org/10.1093/jb/mvi024 pmid: 15749823
51 I Martianov, A Ramadass, A Serra Barros, N Chow, A Akoulitchev. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 2007; 445(7128): 666–670
https://doi.org/10.1038/nature05519 pmid: 17237763
52 JL Rinn, M Kertesz, JK Wang, SL Squazzo, X Xu, SA Brugmann, LH Goodnough, JA Helms, PJ Farnham, E Segal, HY Chang. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129(7): 1311–1323
https://doi.org/10.1016/j.cell.2007.05.022 pmid: 17604720
53 AM Khalil, M Guttman, M Huarte, M Garber, A Raj, D Rivea Morales, K Thomas, A Presser, BE Bernstein, A van Oudenaarden, A Regev, ES Lander, JL Rinn. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 2009; 106(28): 11667–11672
https://doi.org/10.1073/pnas.0904715106 pmid: 19571010
54 S Loewer, MN Cabili, M Guttman, YH Loh, K Thomas, IH Park, M Garber, M Curran, T Onder, S Agarwal, PD Manos, S Datta, ES Lander, TM Schlaeger, GQ Daley, JL Rinn. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 2010; 42(12): 1113–1117
https://doi.org/10.1038/ng.710 pmid: 21057500
55 J Li, Z Gao, X Wang, H Liu, Y Zhang, Z Liu. Identification and functional analysis of long intergenic noncoding RNA genes in porcine pre-implantation embryonic development. Sci Rep 2016; 6(1): 38333
https://doi.org/10.1038/srep38333 pmid: 27922056
56 M Guttman, J Donaghey, BW Carey, M Garber, JK Grenier, G Munson, G Young, AB Lucas, R Ach, L Bruhn, X Yang, I Amit, A Meissner, A Regev, JL Rinn, DE Root, ES Lander. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 2011; 477(7364): 295–300
https://doi.org/10.1038/nature10398 pmid: 21874018
57 M Guttman, I Amit, M Garber, C French, MF Lin, D Feldser, M Huarte, O Zuk, BW Carey, JP Cassady, MN Cabili, R Jaenisch, TS Mikkelsen, T Jacks, N Hacohen, BE Bernstein, M Kellis, A Regev, JL Rinn, ES Lander. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009; 458(7235): 223–227
https://doi.org/10.1038/nature07672 pmid: 19182780
58 C Chen. Pregnancy after human oocyte cryopreservation. Lancet 1986; 327(8486): 884–886
https://doi.org/10.1016/S0140-6736(86)90989-X pmid: 2870356
[1] Jing Ma, Shiyu Chen, Lili Hao, Wei Sheng, Weicheng Chen, Xiaojing Ma, Bowen Zhang, Duan Ma, Guoying Huang. Long non-coding RNA SAP30-2:1 is downregulated in congenital heart disease and regulates cell proliferation by targeting HAND2[J]. Front. Med., 2021, 15(1): 91-100.
[2] Xin Zou, Ke Chen, Jiawei Zou, Peiyi Han, Jie Hao, Zeguang Han. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection[J]. Front. Med., 2020, 14(2): 185-192.
[3] Nan Ding,Jiafei Xi,Yanming Li,Xiaoyan Xie,Jian Shi,Zhaojun Zhang,Yanhua Li,Fang Fang,Sihan Wang,Wen Yue,Xuetao Pei,Xiangdong Fang. Global transcriptome analysis for identification of interactions between coding and noncoding RNAs during human erythroid differentiation[J]. Front. Med., 2016, 10(3): 297-310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed