Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (3) : 307-321    https://doi.org/10.1007/s11684-022-0927-0
REVIEW
Analysis of interactions of immune checkpoint inhibitors with antibiotics in cancer therapy
Yingying Li, Shiyuan Wang, Mengmeng Lin, Chunying Hou, Chunyu Li(), Guohui Li()
Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
 Download: PDF(1498 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The discovery of immune checkpoint inhibitors, such as PD-1/PD-L1 and CTLA-4, has played an important role in the development of cancer immunotherapy. However, immune-related adverse events often occur because of the enhanced immune response enabled by these agents. Antibiotics are widely applied in clinical treatment, and they are inevitably used in combination with immune checkpoint inhibitors. Clinical practice has revealed that antibiotics can weaken the therapeutic response to immune checkpoint inhibitors. Studies have shown that the gut microbiota is essential for the interaction between immune checkpoint inhibitors and antibiotics, although the exact mechanisms remain unclear. This review focuses on the interactions between immune checkpoint inhibitors and antibiotics, with an in-depth discussion about the mechanisms and therapeutic potential of modulating gut microbiota, as well as other new combination strategies.

Keywords tumor immunotherapy      immune checkpoint inhibitor      antibiotics      gut microbiota      drug–drug interaction     
Corresponding Author(s): Chunyu Li,Guohui Li   
Just Accepted Date: 22 April 2022   Online First Date: 06 June 2022    Issue Date: 18 July 2022
 Cite this article:   
Yingying Li,Shiyuan Wang,Mengmeng Lin, et al. Analysis of interactions of immune checkpoint inhibitors with antibiotics in cancer therapy[J]. Front. Med., 2022, 16(3): 307-321.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-022-0927-0
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I3/307
Fig.1  ICI mechanisms. CTLA-4 on T cells binds with CD80/CD86 on antigen-presenting cells (APCs), preventing T cell activation. Blocking CTLA-4 with CTLA-4 inhibitor restores T cell function. PD-1 on T cells binds with PD-L1 on tumor cells, inhibiting T cell function and leading to tumor cell immune escape. PD-1 or PD-L1 blockade by PD-1 inhibitor or PD-L1 inhibitor releases T cell inhibition, enabling them to kill tumor cells.
irAEs Antibiotic use
Skin irAEs Grade 3 or 4; tetracycline antibiotics have been reported to be effective replacement drugs [42]
Gastrointestinal (GI) irAEs Grade 2, 3, or 4; use of antibiotics should be considered to prevent opportunistic infections [25]
Pneumonia irAEs Grade 2; prophylactic use of antibiotics should be considered Grade 3 or 4; antibiotics should be added to prevent opportunistic infections [25], and broad-spectrum antibiotics are recommended [42]
Renal irAEs Grade 2 or 3; antibiotics should be used when necessary to prevent opportunistic infections Grade 4; antibiotics are added to prevent opportunistic infections [25]
Tab.1  Examples of ICIs combined with antibiotics
Cancer type/patients Antibiotic type Antibiotic exposure Median PFS Median OS
mo vs. mo HR P mo vs. mo HR P
NSCLC/50 [41] β-lactams/quinolones Antibiotics vs. no antibiotics 4.1 vs. 12.4 0.004 11.3 vs. 15.3
Prior-30 vs. post-antibiotics Similarly Similarly
NSCLC/RCC/UC/2740 [44] β-lactams Antibiotics vs. no antibiotics 1.84 < 0.001 2.37 < 0.001
NSCLC/119 β-lactams Prior-antibiotics vs. no antibiotics 2.5 vs. 26 9.3 < 0.001
Melanoma/38 Prior-antibiotics vs. no antibiotics 3.9 vs. 14 7.5 < 0.001
Others/39 [45] Prior-antibiotics vs. no antibiotics 1.1 vs. 11 7.8 < 0.001
NSCLC/157 [46] β-lactams/quinolones/macrolides Prior-30 vs. no antibiotics 2.2 vs. 3.3 5.9 vs. 11.9
High vs. low AIER (during ICIs) 1.9 vs. 3.5 1.053 0.0029 5.1 vs. 13.2 1.069 0.0001
NSCLC/218 [58] β-lactams/macrolides/quinolones Prior-60 vs. no antibiotics 1.4 vs. 5.5 2.22 < 0.01 1.8 vs. 15.4 2.61 < 0.05
c-antibiotics vs. no antibiotics 7.0 vs. 3.6 0.86 0.01 11.7 vs. 11.7 1.10 0.62
Post-30 vs. no antibiotics 3.6 vs. 4.5 1.15 0.59 17.5 vs. 11.5 0.86 0.62
NSCLC/90 [48] β-lactams Prior-30 vs. no antibiotics 1.2 vs. 4.4 8.8 vs. < 8 2.02 0.19
NSCLC/60 [54] Tetracyclines/macrolides Prior-14 and/or post-14 vs. no antibiotics 1.6 0.048 6.0 vs. 22.3 1.6 0.003
Fluoroquinolones Broad- vs. narrow-spectrum antibiotics 1.895
RCC/121 [57] β-lactams/quinolones Prior-30 vs. no antibiotics 1.9 vs. 7.4 3.1 < 0.01 17.3 vs. 30.6 3.5 0.03
Prior-60 vs. no antibiotics 3.1 vs. 7.4 2.3 < 0.01 23.4 vs. 30 1.9 0.15
NSCLC/239 [57] Prior-30 vs. no antibiotics 1.9 vs. 3.8 1.5 0.03 7.9 vs. 24.6 4.4 < 0.01
Prior-60 vs. no antibiotics 9.8 vs. 21.9 2.0 < 0.01
NSCLC/melanoma/102 [62] β-lactams Antibiotics 30+ vs. antibiotics 30− 4.3 vs. 5.8 1.43 0.1 11.7 vs. 14.5 1.53 0.1
Fluoroquinolones Antibiotics + vs. antibiotics − 5.8 vs. 4.4 0.69 0.1 13.3 vs. 13.8 0.98 0.9
Tab.2  Narrative comparison of median PFS and OS between different antibiotic exposure groups based on univariable analysis
Fig.2  Proposed antibiotic immunomodulatory mechanisms influencing ICI anticancer efficacy via the gut microbiota in animal models and patients. Akkermansia muciniphila, Enterococcus hirae, Clostridiales, Ruminococcaceae, and Faecalibacterium can upregulate CD4+ and CD8+ T cell expression in peripheral blood (PB). A. muciniphila and E. hirae can upregulate central memory CD4+ T cell expression in mouse mesenteric lymph nodes (MLNs) and tumor-draining lymph nodes (TDLNs) and can upregulate the CD4+/Foxp3 ratio in mouse tumors, thus enhancing antitumor efficacy. Clostridiales, Ruminococcaceae, and Faecalibacterium can increase CD8+ T cell quantity in mouse tumors, thus enhancing antitumor efficacy. Bifidobacterium spp. and Bacteroides fragilis can induce dendritic cell (DC) maturation in TDLNs and further enhance IFN-γ secreting helper T cell 1 (TH1) immune responses. Bifidobacterium spp. also upregulate CD8+ T cell expression and class I and class II major histocompatibility complex (MHC) in TME. Bacteroidales can induce CD4+ T cell differentiation into regulatory T cells (Tregs) that secrete numerous anti-inflammatory cytokines (such as IL-10), leading to tumor immune escape and TH17 secretion of IL-17, which play important roles in promoting inflammatory responses. Immunosuppressive myeloid-derived suppressor cell (MDSC) differentiation is also increased in mice rich in B. fragilis and Bacteroidales, which promotes colon tumor occurrence.
1 BB Xu, YJ He, WL Wang, CF Zhou, SC Xie, DY Shen , H Lmcleod. Research progress of immune checkpoint therapy for cancer. Chin J Clin Pharm Ther (Zhongguo Lin Chuang Yao Li Xue Yu Zhi Liao Xue) 2016; 21(2): 218−234 (in Chinese)
2 P Chen, JG Lin, YB Dai, AY Zhao, YJ Dai, TW Xu. Progress in understanding the relationship between gut microbiota and immune checkpoint inhibitors. Chin J Clin Oncol (Zhongguo Zhong Liu Lin Chuang) 2019; 46(24): 1292−1296 (in Chinese)
3 P Darvin, SM Toor, V Sasidharan Nair, E Elkord. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 2018; 50( 12): 1– 11
https://doi.org/10.1038/s12276-018-0191-1
4 S Zhao, G Gao, W Li, X Li, C Zhao, T Jiang, Y Jia, Y He, A Li, C Su, S Ren, X Chen, C Zhou. Antibiotics are associated with attenuated efficacy of anti-PD-1/PD-L1 therapies in Chinese patients with advanced non-small cell lung cancer. Lung Cancer 2019; 130 : 10– 17
https://doi.org/10.1016/j.lungcan.2019.01.017
5 A Rotte. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res 2019; 38( 1): 255
https://doi.org/10.1186/s13046-019-1259-z
6 I Herrera-Camacho, M Anaya-Ruiz, M Perez-Santos, Peña L Millán-Pérez, C Bandala, G Landeta. Cancer immunotherapy using anti-TIM3/PD-1 bispecific antibody: a patent evaluation of EP3356411A1. Expert Opin Ther Pat 2019; 29( 8): 587– 593
https://doi.org/10.1080/13543776.2019.1637422
7 I Datar, MF Sanmamed, J Wang, BS Henick, J Choi, T Badri, W Dong, N Mani, M Toki, LD Mejías, MD Lozano, JL Perez-Gracia, V Velcheti, MD Hellmann, JF Gainor, K McEachern, D Jenkins, K Syrigos, K Politi, S Gettinger, DL Rimm, RS Herbst, I Melero, L Chen, KA Schalper. Expression analysis and significance of PD-1, LAG-3, and TIM-3 in human non-small cell lung cancer using spatially resolved and multiparametric single-cell analysis. Clin Cancer Res 2019; 25( 15): 4663– 4673
https://doi.org/10.1158/1078-0432.CCR-18-4142
8 MW McCarthy, TJ Walsh. Checkpoint inhibitors and the risk of infection. Expert Rev Precis Med Drug Dev 2017; 2( 5): 287– 293
https://doi.org/10.1080/23808993.2017.1380517
9 E Ruffo, RC Wu, TC Bruno, CJ Workman, DAA Vignali. Lymphocyte-activation gene 3 (LAG3): the next immune checkpoint receptor. Semin Immunol 2019; 42 : 101305
https://doi.org/10.1016/j.smim.2019.101305
10 X Huang, X Zhang, E Li, G Zhang, X Wang, T Tang, X Bai, T Liang. VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy. J Hematol Oncol 2020; 13( 1): 83
https://doi.org/10.1186/s13045-020-00917-y
11 J Gao, JF Ward, CA Pettaway, LZ Shi, SK Subudhi, LM Vence, H Zhao, J Chen, H Chen, E Efstathiou, P Troncoso, JP Allison, CJ Logothetis, II Wistuba, MA Sepulveda, J Sun, J Wargo, J Blando, P Sharma. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med 2017; 23( 5): 551– 555
https://doi.org/10.1038/nm.4308
12 SB Willingham, AN Hotson, RA Miller. Targeting the A2AR in cancer; early lessons from the clinic. Curr Opin Pharmacol 2020; 53 : 126– 133
https://doi.org/10.1016/j.coph.2020.08.003
13 L Fong, A Hotson, JD Powderly, M Sznol, RS Heist, TK Choueiri, S George, BGM Hughes, MD Hellmann, DR Shepard, BI Rini, S Kummar, AM Weise, MJ Riese, B Markman, LA Emens, D Mahadevan, JJ Luke, G Laport, JD Brody, L Hernandez-Aya, P Bonomi, JW Goldman, L Berim, DJ Renouf, RA Goodwin, B Munneke, PY Ho, J Hsieh, I McCaffery, L Kwei, SB Willingham, RA Miller. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov 2020; 10( 1): 40– 53
https://doi.org/10.1158/2159-8290.CD-19-0980
14 Y Han, D Liu, L Li. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res 2020; 10( 3): 727– 742
15 KC Ohaegbulam, A Assal, E Lazar-Molnar, Y Yao, X Zang. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med 2015; 21( 1): 24– 33
https://doi.org/10.1016/j.molmed.2014.10.009
16 AJ Schoenfeld, MD Hellmann. Acquired resistance to immune checkpoint inhibitors. Cancer Cell 2020; 37( 4): 443– 455
https://doi.org/10.1016/j.ccell.2020.03.017
17 Y Wang, R Ma, F Liu, SA Lee, L Zhang. Modulation of gut microbiota: a novel paradigm of enhancing the efficacy of programmed death-1 and programmed death ligand-1 blockade therapy. Front Immunol 2018; 9 : 374
https://doi.org/10.3389/fimmu.2018.00374
18 H Dong, G Zhu, K Tamada, L Chen. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5( 12): 1365– 1369
https://doi.org/10.1038/70932
19 A Akinleye, Z Rasool. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol 2019; 12( 1): 92
https://doi.org/10.1186/s13045-019-0779-5
20 SJ Im, M Hashimoto, MY Gerner, J Lee, HT Kissick, MC Burger, Q Shan, JS Hale, J Lee, TH Nasti, AH Sharpe, GJ Freeman, RN Germain, HI Nakaya, HH Xue, R Ahmed. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 2016; 537( 7620): 417– 421
https://doi.org/10.1038/nature19330
21 M Yi, S Yu, S Qin, Q Liu, H Xu, W Zhao, Q Chu, K Wu. Gut microbiome modulates efficacy of immune checkpoint inhibitors. J Hematol Oncol 2018; 11( 1): 47
https://doi.org/10.1186/s13045-018-0592-6
22 EI Buchbinder, A Desai. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 2016; 39( 1): 98– 106
https://doi.org/10.1097/COC.0000000000000239
23 OS Qureshi, Y Zheng, K Nakamura, K Attridge, C Manzotti, EM Schmidt, J Baker, LE Jeffery, S Kaur, Z Briggs, TZ Hou, CE Futter, G Anderson, LS Walker, DM Sansom. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 2011; 332( 6029): 600– 603
https://doi.org/10.1126/science.1202947
24 B Rowshanravan, N Halliday, DM Sansom. CTLA-4: a moving target in immunotherapy. Blood 2018; 131( 1): 58– 67
https://doi.org/10.1182/blood-2017-06-741033
25 Yan CX, Zhang R, Wang NX. Immune-related adverse reactions with PD-1/PD-L1 mab. West China J Pharm Sci (Hua Xi Yao Xue Za Zhi) 2018; 33(3): 333−336 (in Chinese)
26 H Yang, C Zhou, F Yuan, L Guo, L Yang, Y Shi, J Zhang. Case report: severe immune-related cholestatic hepatitis and subsequent pneumonia after pembrolizumab therapy in a geriatic patient with metastic gastric cancer. Front Med (Lausanne) 2021; 8 : 719236
https://doi.org/10.3389/fmed.2021.719236
27 RW Jenkins, DA Barbie, KT Flaherty. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 2018; 118( 1): 9– 16
https://doi.org/10.1038/bjc.2017.434
28 D Benfaremo, L Manfredi, MM Luchetti, A Gabrielli. Musculoskeletal and rheumatic diseases induced by immune checkpoint inhibitors: a review of the literature. Curr Drug Saf 2018; 13( 3): 150– 164
https://doi.org/10.2174/1574886313666180508122332
29 Sun L, Liu Z, Zhang S. Adverse reaction and management of immune checkpoint inhibitor. J Med Postgra (Yi Xue Yan Jiu Sheng Xue Bao) 2019; 32(10): 1115−1120 (in Chinese)
30 J Villadolid, A Amin. Immune checkpoint inhibitors in clinical practice: update on management of immune-related toxicities. Transl Lung Cancer Res 2015; 4( 5): 560– 575
31 R Shah, D Witt, T Asif, FF Mir. Ipilimumab as a cause of severe pan-colitis and colonic perforation. Cureus 2017; 9( 4): e1182
https://doi.org/10.7759/cureus.1182
32 JD Karam, N Noel, AL Voisin, E Lanoy, JM Michot, O Lambotte. Infectious complications in patients treated with immune checkpoint inhibitors. Eur J Cancer 2020; 141 : 137– 142
https://doi.org/10.1016/j.ejca.2020.09.025
33 Castillo M Del, FA Romero, E Argüello, C Kyi, MA Postow, G Redelman-Sidi. The spectrum of serious infections among patients receiving immune checkpoint blockade for the treatment of melanoma. Clin Infect Dis 2016; 63( 11): 1490– 1493
https://doi.org/10.1093/cid/ciw539
34 JA Ross, K Komoda, S Pal, J Dickter, R Salgia, S Dadwal. Infectious complications of immune checkpoint inhibitors in solid organ malignancies. Cancer Med 2022; 11( 1): 21– 27
https://doi.org/10.1002/cam4.4393
35 J Boegeholz, CS Brueggen, C Pauli, F Dimitriou, E Haralambieva, R Dummer, MG Manz, CC Widmer. Challenges in diagnosis and management of neutropenia upon exposure to immune-checkpoint inhibitors: meta-analysis of a rare immune-related adverse side effect. BMC Cancer 2020; 20( 1): 300
https://doi.org/10.1186/s12885-020-06763-y
36 M Guo, A Balaji, J Murray, J Reuss, SM Steinke, J Naidoo. 237 Infectious complications in patients with non-small cell lung cancer treated with anti-PD (L) 1 immune checkpoint inhibitors. J Immunother Cancer 2021; 9(Suppl 2): A253
https://doi.org/10.1136/jitc-2021.SITC2021.237
37 K Fujita, YH Kim, O Kanai, H Yoshida, T Mio, T Hirai. Emerging concerns of infectious diseases in lung cancer patients receiving immune checkpoint inhibitor therapy. Respir Med 2019; 146 : 66– 70
https://doi.org/10.1016/j.rmed.2018.11.021
38 JR Brahmer, C Lacchetti, BJ Schneider, MB Atkins, KJ Brassil, JM Caterino, I Chau, MS Ernstoff, JM Gardner, P Ginex, S Hallmeyer, Chakrabarty J Holter, NB Leighl, JS Mammen, DF McDermott, A Naing, LJ Nastoupil, T Phillips, LD Porter, I Puzanov, CA Reichner, BD Santomasso, C Seigel, A Spira, ME Suarez-Almazor, Y Wang, JS Weber, JD Wolchok, JA; National Comprehensive Cancer Network Thompson. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2018; 36( 17): 1714– 1768
https://doi.org/10.1200/JCO.2017.77.6385
39 GH Li, HB Huang, M Yang, X Chen , ST Liu , ZH Zheng . Guidelines for whole-course pharmaceutical care with immune checkpoint inhibitors (2019 Edition). Pharm Today (Jin Ri Yao Xue) 2020; 30(5): 289−306 (in Chinese)
40 MX Yang , M Yuan , JD Tong , XB Yan . Role of antibiotics in tumor development and immunotherapy. J Int Oncol (Guo Ji Zhong Liu Xue Za Zhi) 2021; 48(1): 48−51 (in Chinese)
41 A Castello, S Rossi, L Toschi, E Lopci. Impact of antibiotic therapy and metabolic parameters in non-small cell lung cancer patients receiving checkpoint inhibitors. J Clin Med 2021; 10( 6): 1251
https://doi.org/10.3390/jcm10061251
42 YH Wang , RH Zhang. Progress in diagnosis and treatment of adverse reactions related to immune checkpoint inhibitors in advanced lung cancer. Zhejiang Med (Zhe Jiang Yi Xue) 2020; 42(12): 1227−1231 (in Chinese)
43 JA Fishman, JI Hogan, MV Maus. Inflammatory and infectious syndromes associated with cancer immunotherapies. Clin Infect Dis 2019; 69( 6): 909– 920
https://doi.org/10.1093/cid/ciy1025
44 XZ Huang, P Gao, YX Song, Y Xu, JX Sun, XW Chen, JH Zhao, ZN Wang. Antibiotic use and the efficacy of immune checkpoint inhibitors in cancer patients: a pooled analysis of 2740 cancer patients. OncoImmunology 2019; 8( 12): e1665973
https://doi.org/10.1080/2162402X.2019.1665973
45 DJ Pinato, S Howlett, D Ottaviani, H Urus, A Patel, T Mineo, C Brock, D Power, O Hatcher, A Falconer, M Ingle, A Brown, D Gujral, S Partridge, N Sarwar, M Gonzalez, M Bendle, C Lewanski, T Newsom-Davis, E Allara, M Bower. Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer. JAMA Oncol 2019; 5( 12): 1774– 1778
https://doi.org/10.1001/jamaoncol.2019.2785
46 G Galli, T Triulzi, C Proto, D Signorelli, M Imbimbo, M Poggi, G Fucà, M Ganzinelli, M Vitali, D Palmieri, A Tessari, Braud F de, MC Garassino, MP Colombo, Russo G Lo. Association between antibiotic-immunotherapy exposure ratio and outcome in metastatic non small cell lung cancer. Lung Cancer 2019; 132 : 72– 78
https://doi.org/10.1016/j.lungcan.2019.04.008
47 M Tsikala-Vafea, N Belani, K Vieira, H Khan, D Farmakiotis. Use of antibiotics is associated with worse clinical outcomes in patients with cancer treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Int J Infect Dis 2021; 106 : 142– 154
https://doi.org/10.1016/j.ijid.2021.03.063
48 T Hakozaki, Y Okuma, M Omori, Y Hosomi. Impact of prior antibiotic use on the efficacy of nivolumab for non-small cell lung cancer. Oncol Lett 2019; 17( 3): 2946– 2952
https://doi.org/10.3892/ol.2019.9899
49 JJ Mata-Molanes, González M Sureda, Jiménez B Valenzuela, Navarro EM Martínez, Masllorens A Brugarolas. Cancer immunotherapy with cytokine-induced killer cells. Target Oncol 2017; 12( 3): 289– 299
https://doi.org/10.1007/s11523-017-0489-2
50 V Sethi, S Kurtom, M Tarique, S Lavania, Z Malchiodi, L Hellmund, L Zhang, U Sharma, B Giri, B Garg, A Ferrantella, SM Vickers, S Banerjee, R Dawra, S Roy, S Ramakrishnan, A Saluja, V Dudeja. Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology 2018; 155( 1): 33– 37.e6
https://doi.org/10.1053/j.gastro.2018.04.001
51 MY Wei, S Shi, C Liang, QC Meng, J Hua, YY Zhang, J Liu, B Zhang, J Xu, XJ Yu. The microbiota and microbiome in pancreatic cancer: more influential than expected. Mol Cancer 2019; 18( 1): 97
https://doi.org/10.1186/s12943-019-1008-0
52 DA Hill, C Hoffmann, MC Abt, Y Du, D Kobuley, TJ Kirn, FD Bushman, D Artis. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol 2010; 3( 2): 148– 158
https://doi.org/10.1038/mi.2009.132
53 B Routy, Chatelier E Le, L Derosa, CPM Duong, MT Alou, R Daillère, A Fluckiger, M Messaoudene, C Rauber, MP Roberti, M Fidelle, C Flament, V Poirier-Colame, P Opolon, C Klein, K Iribarren, L Mondragón, N Jacquelot, B Qu, G Ferrere, C Clémenson, L Mezquita, JR Masip, C Naltet, S Brosseau, C Kaderbhai, C Richard, H Rizvi, F Levenez, N Galleron, B Quinquis, N Pons, B Ryffel, V Minard-Colin, P Gonin, JC Soria, E Deutsch, Y Loriot, F Ghiringhelli, G Zalcman, F Goldwasser, B Escudier, MD Hellmann, A Eggermont, D Raoult, L Albiges, G Kroemer, L Zitvogel. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018; 359( 6371): 91– 97
https://doi.org/10.1126/science.aan3706
54 J Ahmed, A Kumar, K Parikh, A Anwar, BM Knoll, C Puccio, H Chun, M Fanucchi, SH Lim. Use of broad-spectrum antibiotics impacts outcome in patients treated with immune checkpoint inhibitors. OncoImmunology 2018; 7( 11): e1507670
https://doi.org/10.1080/2162402X.2018.1507670
55 Y Yin , XY Qiu , ZG Zhao , YH Zhang . Discussion on the effect of antibiotics on the effectiveness of PD-1/PD-L1 antibody immunotherapy. Pract Pharm Clin Remedies (Shi Yong Yao Wu Yu Lin Chuang) 2021; 24(3): 267−269 (in Chinese)
56 D Spakowicz, R Hoyd, M Muniak, M Husain, JS Bassett, L Wang, G Tinoco, SH Patel, J Burkart, A Miah, M Li, A Johns, M Grogan, DP Carbone, CF Verschraegen, KL Kendra, GA Otterson, L Li, CJ Presley, DH Owen. Inferring the role of the microbiome on survival in patients treated with immune checkpoint inhibitors: causal modeling, timing, and classes of concomitant medications. BMC Cancer 2020; 20( 1): 383
https://doi.org/10.1186/s12885-020-06882-6
57 L Derosa, MD Hellmann, M Spaziano, D Halpenny, M Fidelle, H Rizvi, N Long, AJ Plodkowski, KC Arbour, JE Chaft, JA Rouche, L Zitvogel, G Zalcman, L Albiges, B Escudier, B Routy. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol 2018; 29( 6): 1437– 1444
https://doi.org/10.1093/annonc/mdy103
58 A Schett, SI Rothschild, A Curioni-Fontecedro, S Krähenbühl, M Früh, S Schmid, C Driessen, M Joerger. Predictive impact of antibiotics in patients with advanced non small-cell lung cancer receiving immune checkpoint inhibitors: antibiotics immune checkpoint inhibitors in advanced NSCLC. Cancer Chemother Pharmacol 2020; 85( 1): 121– 131
https://doi.org/10.1007/s00280-019-03993-1
59 K Lange, M Buerger, A Stallmach, T Bruns. Effects of antibiotics on gut microbiota. Dig Dis 2016; 34( 3): 260– 268
https://doi.org/10.1159/000443360
60 HE Jakobsson, C Jernberg, AF Andersson, M Sjölund-Karlsson, JK Jansson, L Engstrand. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 2010; 5( 3): e9836
https://doi.org/10.1371/journal.pone.0009836
61 Y Yu, P Zheng, L Gao, H Li, P Tao, D Wang, F Ding, Q Shi, H Chen. Effects of antibiotic use on outcomes in cancer patients treated using immune checkpoint inhibitors: a systematic review and meta-analysis. J Immunother 2021; 44( 2): 76– 85
https://doi.org/10.1097/CJI.0000000000000346
62 A Iglesias-Santamaría. Impact of antibiotic use and other concomitant medications on the efficacy of immune checkpoint inhibitors in patients with advanced cancer. Clin Transl Oncol 2020; 22( 9): 1481– 1490
https://doi.org/10.1007/s12094-019-02282-w
63 N Tinsley, C Zhou, G Tan, S Rack, P Lorigan, F Blackhall, M Krebs, L Carter, F Thistlethwaite, D Graham, N Cook. Cumulative antibiotic use significantly decreases efficacy of checkpoint inhibitors in patients with advanced cancer. Oncologist 2020; 25( 1): 55– 63
https://doi.org/10.1634/theoncologist.2019-0160
64 LK Ursell JL Metcalf LW Parfrey R Knight. Defining the human microbiome. Nutr Rev 2012; 70(Suppl 1): S38–S44
pmid: 22861806
65 G Berg, D Rybakova, D Fischer, T Cernava, MC Vergès, T Charles, X Chen, L Cocolin, K Eversole, GH Corral, M Kazou, L Kinkel, L Lange, N Lima, A Loy, JA Macklin, E Maguin, T Mauchline, R McClure, B Mitter, M Ryan, I Sarand, H Smidt, B Schelkle, H Roume, GS Kiran, J Selvin, RSC Souza, Overbeek L van, BK Singh, M Wagner, A Walsh, A Sessitsch, M Schloter. Microbiome definition re-visited: old concepts and new challenges. Microbiome 2020; 8( 1): 103
https://doi.org/10.1186/s40168-020-00875-0
66 T Velikova, B Krastev, S Lozenov, R Gencheva, M Peshevska-Sekulovska, G Nikolaev, M Peruhova. Antibiotic-related changes in microbiome: the hidden villain behind colorectal carcinoma immunotherapy failure. Int J Mol Sci 2021; 22( 4): 1754
https://doi.org/10.3390/ijms22041754
67 JL Alexander, ID Wilson, J Teare, JR Marchesi, JK Nicholson, JM Kinross. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 2017; 14( 6): 356– 365
https://doi.org/10.1038/nrgastro.2017.20
68 Zhang BC, Peng M, Song QB. Relationship between gut microbiome and efficacy of immunotherapy. J Chin Oncol (Zhong Liu Xue Za Zhi) 2018; 24(11): 1056−1059 (in Chinese)
69 A Sivan, L Corrales, N Hubert, JB Williams, K Aquino-Michaels, ZM Earley, FW Benyamin, YM Lei, B Jabri, ML Alegre, EB Chang, TF Gajewski. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350( 6264): 1084– 1089
https://doi.org/10.1126/science.aac4255
70 U Swami, Y Zakharia, J Zhang. Understanding microbiome effect on immune checkpoint inhibition in lung cancer: placing the puzzle pieces together. J Immunother 2018; 41( 8): 359– 360
https://doi.org/10.1097/CJI.0000000000000232
71 MP Francino. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol 2016; 6 : 1543
https://doi.org/10.3389/fmicb.2015.01543
72 L Dethlefsen DA Relman. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 2011; 108(Suppl 1): 4554–4561
pmid: 20847294
73 MY Yoon, SS Yoon. Disruption of the gut ecosystem by antibiotics. Yonsei Med J 2018; 59( 1): 4– 12
https://doi.org/10.3349/ymj.2018.59.1.4
74 DJ Pinato, D Gramenitskaya, DM Altmann, RJ Boyton, BH Mullish, JR Marchesi, M Bower. Antibiotic therapy and outcome from immune-checkpoint inhibitors. J Immunother Cancer 2019; 7( 1): 287
https://doi.org/10.1186/s40425-019-0775-x
75 M Vétizou, JM Pitt, R Daillère, P Lepage, N Waldschmitt, C Flament, S Rusakiewicz, B Routy, MP Roberti, CP Duong, V Poirier-Colame, A Roux, S Becharef, S Formenti, E Golden, S Cording, G Eberl, A Schlitzer, F Ginhoux, S Mani, T Yamazaki, N Jacquelot, DP Enot, M Bérard, J Nigou, P Opolon, A Eggermont, PL Woerther, E Chachaty, N Chaput, C Robert, C Mateus, G Kroemer, D Raoult, IG Boneca, F Carbonnel, M Chamaillard, L Zitvogel. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350( 6264): 1079– 1084
https://doi.org/10.1126/science.aad1329
76 K Dubin, MK Callahan, B Ren, R Khanin, A Viale, L Ling, D No, A Gobourne, E Littmann, C Huttenhower, EG Pamer, JD Wolchok. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun 2016; 7( 1): 10391
https://doi.org/10.1038/ncomms10391
77 S Pushalkar, M Hundeyin, D Daley, CP Zambirinis, E Kurz, A Mishra, N Mohan, B Aykut, M Usyk, LE Torres, G Werba, K Zhang, Y Guo, Q Li, N Akkad, S Lall, B Wadowski, J Gutierrez, JA Kochen Rossi, JW Herzog, B Diskin, A Torres-Hernandez, J Leinwand, W Wang, PS Taunk, S Savadkar, M Janal, A Saxena, X Li, D Cohen, RB Sartor, D Saxena, G Miller. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 2018; 8( 4): 403– 416
https://doi.org/10.1158/2159-8290.CD-17-1134
78 V Matson, J Fessler, R Bao, T Chongsuwat, Y Zha, ML Alegre, JJ Luke, TF Gajewski. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018; 359( 6371): 104– 108
https://doi.org/10.1126/science.aao3290
79 R Daillère, M Vétizou, N Waldschmitt, T Yamazaki, C Isnard, V Poirier-Colame, CPM Duong, C Flament, P Lepage, MP Roberti, B Routy, N Jacquelot, L Apetoh, S Becharef, S Rusakiewicz, P Langella, H Sokol, G Kroemer, D Enot, A Roux, A Eggermont, E Tartour, L Johannes, PL Woerther, E Chachaty, JC Soria, E Golden, S Formenti, M Plebanski, M Madondo, P Rosenstiel, D Raoult, V Cattoir, IG Boneca, M Chamaillard, L Zitvogel. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 2016; 45( 4): 931– 943
https://doi.org/10.1016/j.immuni.2016.09.009
80 L Derosa, B Routy, M Fidelle, V Iebba, L Alla, E Pasolli, N Segata, A Desnoyer, F Pietrantonio, G Ferrere, JE Fahrner, Chatellier E Le, N Pons, N Galleron, H Roume, CPM Duong, L Mondragón, K Iribarren, M Bonvalet, S Terrisse, C Rauber, AG Goubet, R Daillère, F Lemaitre, A Reni, B Casu, MT Alou, Costa Silva C Alves, D Raoult, K Fizazi, B Escudier, G Kroemer, L Albiges, L Zitvogel. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur Urol 2020; 78( 2): 195– 206
https://doi.org/10.1016/j.eururo.2020.04.044
81 AK Hamm, TL Weir. Editorial on “Cancer and the microbiota” published in Science. Ann Transl Med 2015; 3( 13): 175
82 TT Wind, R Gacesa, A Vich Vila, JJ de Haan, M Jalving, RK Weersma, GAP Hospers. Gut microbial species and metabolic pathways associated with response to treatment with immune checkpoint inhibitors in metastatic melanoma. Melanoma Res 2020; 30( 3): 235– 246
https://doi.org/10.1097/CMR.0000000000000656
83 V Gopalakrishnan, CN Spencer, L Nezi, A Reuben, MC Andrews, TV Karpinets, PA Prieto, D Vicente, K Hoffman, SC Wei, AP Cogdill, L Zhao, CW Hudgens, DS Hutchinson, T Manzo, M Petaccia de Macedo, T Cotechini, T Kumar, WS Chen, SM Reddy, R Szczepaniak Sloane, J Galloway-Pena, H Jiang, PL Chen, EJ Shpall, K Rezvani, AM Alousi, RF Chemaly, S Shelburne, LM Vence, PC Okhuysen, VB Jensen, AG Swennes, F McAllister, E Marcelo Riquelme Sanchez, Y Zhang, E Le Chatelier, L Zitvogel, N Pons, JL Austin-Breneman, LE Haydu, EM Burton, JM Gardner, E Sirmans, J Hu, AJ Lazar, T Tsujikawa, A Diab, H Tawbi, IC Glitza, WJ Hwu, SP Patel, SE Woodman, RN Amaria, MA Davies, JE Gershenwald, P Hwu, JE Lee, J Zhang, LM Coussens, ZA Cooper, PA Futreal, CR Daniel, NJ Ajami, JF Petrosino, MT Tetzlaff, P Sharma, JP Allison, RR Jenq, JA Wargo. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018; 359( 6371): 97– 103
https://doi.org/10.1126/science.aan4236
84 S Rezasoltani, A Yadegar, H Asadzadeh Aghdaei, M Reza Zali. Modulatory effects of gut microbiome in cancer immunotherapy: a novel paradigm for blockade of immune checkpoint inhibitors. Cancer Med 2021; 10( 3): 1141– 1154
https://doi.org/10.1002/cam4.3694
85 X Liu, Y Chen, S Zhang, L Dong. Gut microbiota-mediated immunomodulation in tumor. J Exp Clin Cancer Res 2021; 40( 1): 221
https://doi.org/10.1186/s13046-021-01983-x
86 J Gong, A Chehrazi-Raffle, V Placencio-Hickok, M Guan, A Hendifar, R Salgia. The gut microbiome and response to immune checkpoint inhibitors: preclinical and clinical strategies. Clin Transl Med 2019; 8( 1): 9
https://doi.org/10.1186/s40169-019-0225-x
87 N Chaput, P Lepage, C Coutzac, E Soularue, K Le Roux, C Monot, L Boselli, E Routier, L Cassard, M Collins, T Vaysse, L Marthey, A Eggermont, V Asvatourian, E Lanoy, C Mateus, C Robert, F Carbonnel. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol 2017; 28( 6): 1368– 1379
https://doi.org/10.1093/annonc/mdx108
88 JL Round, SK Mazmanian. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 2010; 107( 27): 12204– 12209
https://doi.org/10.1073/pnas.0909122107
89 E Thiele Orberg, H Fan, AJ Tam, CM Dejea, CE Destefano Shields, S Wu, L Chung, BB Finard, X Wu, P Fathi, S Ganguly, J Fu, DM Pardoll, CL Sears, F Housseau. The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol 2017; 10( 2): 421– 433
https://doi.org/10.1038/mi.2016.53
90 PM Smith, MR Howitt, N Panikov, M Michaud, CA Gallini, M Bohlooly-Y, JN Glickman, WS Garrett. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341( 6145): 569– 573
https://doi.org/10.1126/science.1241165
91 X Xu, J Lv, F Guo, J Li, Y Jia, D Jiang, N Wang, C Zhang, L Kong, Y Liu, Y Zhang, J Lv, Z Li. Gut microbiome influences the efficacy of PD-1 antibody immunotherapy on MSS-type colorectal cancer via metabolic pathway. Front Microbiol 2020; 11 : 814
https://doi.org/10.3389/fmicb.2020.00814
92 J Liu, Y Gao, X Wang, Z Qian, J Chen, Y Huang, Z Meng, X Lu, G Deng, F Liu, Z Zhang, H Li, X Zheng. Culture-positive spontaneous ascitic infection in patients with acute decompensated cirrhosis: multidrug-resistant pathogens and antibiotic strategies. Yonsei Med J 2020; 61( 2): 145– 153
https://doi.org/10.3349/ymj.2020.61.2.145
93 EH Lee, S Kim, MS Choi, H Yang, SM Park, HA Oh, KS Moon, JS Han, YB Kim, S Yoon, JH Oh. Gene networking in colistin-induced nephrotoxicity reveals an adverse outcome pathway triggered by proteotoxic stress. Int J Mol Med 2019; 43( 3): 1343– 1355
https://doi.org/10.3892/ijmm.2019.4052
94 A Imdad, MR Nicholson, EE Tanner-Smith, JP Zackular, OG Gomez-Duarte, DB Beaulieu, S Acra. Fecal transplantation for treatment of inflammatory bowel disease. Cochrane Database Syst Rev 2018; 11 : CD012774
https://doi.org/10.1002/14651858.CD012774.pub2
95 N Kamada, SU Seo, GY Chen, G Núñez. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 2013; 13( 5): 321– 335
https://doi.org/10.1038/nri3430
96 JM Pickard, MY Zeng, R Caruso, G Núñez. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 2017; 279( 1): 70– 89
https://doi.org/10.1111/imr.12567
97 DJ Schwartz, ON Rebeck, G Dantas. Complex interactions between the microbiome and cancer immune therapy. Crit Rev Clin Lab Sci 2019; 56( 8): 567– 585
https://doi.org/10.1080/10408363.2019.1660303
98 D Chen, J Wu, D Jin, B Wang, H Cao. Fecal microbiota transplantation in cancer management: current status and perspectives. Int J Cancer 2019; 145( 8): 2021– 2031
https://doi.org/10.1002/ijc.32003
99 EN Baruch, I Youngster, G Ben-Betzalel, R Ortenberg, A Lahat, L Katz, K Adler, D Dick-Necula, S Raskin, N Bloch, D Rotin, L Anafi, C Avivi, J Melnichenko, Y Steinberg-Silman, R Mamtani, H Harati, N Asher, R Shapira-Frommer, T Brosh-Nissimov, Y Eshet, S Ben-Simon, O Ziv, MAW Khan, M Amit, NJ Ajami, I Barshack, J Schachter, JA Wargo, O Koren, G Markel, B Boursi. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021; 371( 6529): 602– 609
https://doi.org/10.1126/science.abb5920
100 D Davar, AK Dzutsev, JA McCulloch, RR Rodrigues, JM Chauvin, RM Morrison, RN Deblasio, C Menna, Q Ding, O Pagliano, B Zidi, S Zhang, JH Badger, M Vetizou, AM Cole, MR Fernandes, S Prescott, RGF Costa, AK Balaji, A Morgun, I Vujkovic-Cvijin, H Wang, AA Borhani, MB Schwartz, HM Dubner, SJ Ernst, A Rose, YG Najjar, Y Belkaid, JM Kirkwood, G Trinchieri, HM Zarour. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 2021; 371( 6529): 595– 602
https://doi.org/10.1126/science.abf3363
101 S Doron DR Snydman. Risk and safety of probiotics. Clin Infect Dis 2015; 60(Suppl 2): S129–S134
pmid: 25922398
102 KR Pandey, SR Naik, BV Vakil. Probiotics, prebiotics and synbiotics—a review. J Food Sci Technol 2015; 52( 12): 7577– 7587
https://doi.org/10.1007/s13197-015-1921-1
103 GR Gibson, MB Roberfroid. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995; 125( 6): 1401– 1412
https://doi.org/10.1093/jn/125.6.1401
104 Y Hu, RK Le Leu, CT Christophersen, R Somashekar, MA Conlon, XQ Meng, JM Winter, RJ Woodman, R McKinnon, GP Young. Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats. Carcinogenesis 2016; 37( 4): 366– 375
https://doi.org/10.1093/carcin/bgw019
105 W Li, Y Deng, Q Chu, P Zhang. Gut microbiome and cancer immunotherapy. Cancer Lett 2019; 447 : 41– 47
https://doi.org/10.1016/j.canlet.2019.01.015
106 A Botticelli, I Zizzari, F Mazzuca, PA Ascierto, L Putignani, L Marchetti, C Napoletano, M Nuti, P Marchetti. Cross-talk between microbiota and immune fitness to steer and control response to anti PD-1/PDL-1 treatment. Oncotarget 2017; 8( 5): 8890– 8899
https://doi.org/10.18632/oncotarget.12985
107 Y Li, R Zhao, K Cheng, K Zhang, Y Wang, Y Zhang, Y Li, G Liu, J Xu, J Xu, GJ Anderson, J Shi, L Ren, X Zhao, G Nie. Bacterial outer membrane vesicles presenting programmed death 1 for improved cancer immunotherapy via immune activation and checkpoint inhibition. ACS Nano 2020; 14( 12): 16698– 16711
https://doi.org/10.1021/acsnano.0c03776
108 J Huang, D Liu, Y Wang, L Liu, J Li, J Yuan, Z Jiang, Z Jiang, WW Hsiao, H Liu, I Khan, Y Xie, J Wu, Y Xie, Y Zhang, Y Fu, J Liao, W Wang, H Lai, A Shi, J Cai, L Luo, R Li, X Yao, X Fan, Q Wu, Z Liu, P Yan, J Lu, M Yang, L Wang, Y Cao, H Wei, EL Leung. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut 2022; 71( 4): 734– 745
https://doi.org/10.1136/gutjnl-2020-321031
109 J Lv, Y Jia, J Li, W Kuai, Y Li, F Guo, X Xu, Z Zhao, J Lv, Z Li. Gegen Qinlian decoction enhances the effect of PD-1 blockade in colorectal cancer with microsatellite stability by remodelling the gut microbiota and the tumour microenvironment. Cell Death Dis 2019; 10( 6): 415
https://doi.org/10.1038/s41419-019-1638-6
110 H Zhen X Qian X Fu Z Chen A Zhang L Shi. Regulation of Shaoyao Ruangan mixture on intestinal flora in mice with primary liver cancer. Integr Cancer Ther 2019; 18: 1534735419843178
pmid: 31006277
111 RM McFadden, CB Larmonier, KW Shehab, M Midura-Kiela, R Ramalingam, CA Harrison, DG Besselsen, JH Chase, JG Caporaso, C Jobin, FK Ghishan, PR Kiela. The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention. Inflamm Bowel Dis 2015; 21( 11): 2483– 2494
https://doi.org/10.1097/MIB.0000000000000522
112 MA Conlon, AR Bird. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014; 7( 1): 17– 44
https://doi.org/10.3390/nu7010017
113 RS Mehta, R Nishihara, Y Cao, M Song, K Mima, ZR Qian, JA Nowak, K Kosumi, T Hamada, Y Masugi, S Bullman, DA Drew, AD Kostic, TT Fung, WS Garrett, C Huttenhower, K Wu, JA Meyerhardt, X Zhang, WC Willett, EL Giovannucci, CS Fuchs, AT Chan, S Ogino. Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol 2017; 3( 7): 921– 927
https://doi.org/10.1001/jamaoncol.2016.6374
114 C De Filippo, D Cavalieri, M Di Paola, M Ramazzotti, JB Poullet, S Massart, S Collini, G Pieraccini, P Lionetti. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010; 107( 33): 14691– 14696
https://doi.org/10.1073/pnas.1005963107
115 W Wei, W Sun, S Yu, Y Yang, L Ai. Butyrate production from high-fiber diet protects against lymphoma tumor. Leuk Lymphoma 2016; 57( 10): 2401– 2408
https://doi.org/10.3109/10428194.2016.1144879
116 J Feng, H Yang, Y Zhang, H Wei, Z Zhu, B Zhu, M Yang, W Cao, L Wang, Z Wu. Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene 2017; 36( 42): 5829– 5839
https://doi.org/10.1038/onc.2017.188
117 P Seth, E Csizmadia, A Hedblom, M Vuerich, H Xie, M Li, MS Longhi, B Wegiel. Deletion of lactate dehydrogenase-A in myeloid cells triggers antitumor immunity. Cancer Res 2017; 77( 13): 3632– 3643
https://doi.org/10.1158/0008-5472.CAN-16-2938
118 VA Poroyko, A Carreras, A Khalyfa, AA Khalyfa, V Leone, E Peris, I Almendros, A Gileles-Hillel, Z Qiao, N Hubert, R Farré, EB Chang, D Gozal. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep 2016; 6( 1): 35405
https://doi.org/10.1038/srep35405
119 Y Wang, Z Kuang, X Yu, KA Ruhn, M Kubo, LV Hooper. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 2017; 357( 6354): 912– 916
https://doi.org/10.1126/science.aan0677
120 J Wang, HR Yang, DJ Wang, XX Wang. Association between the gut microbiota and patient responses to cancer immune checkpoint inhibitors. Oncol Lett 2020; 20( 6): 342
https://doi.org/10.3892/ol.2020.12205
121 KA Lee, HM Shaw, V Bataille, P Nathan, TD Spector. Role of the gut microbiome for cancer patients receiving immunotherapy: dietary and treatment implications. Eur J Cancer 2020; 138 : 149– 155
https://doi.org/10.1016/j.ejca.2020.07.026
122 J Zhang, Z Dai, C Yan, W Zhang, D Wang, D Tang. A new biological triangle in cancer: intestinal microbiota, immune checkpoint inhibitors and antibiotics. Clin Transl Oncol 2021; 23( 12): 2415– 2430
https://doi.org/10.1007/s12094-021-02659-w
123 P Patel, A Poudel, S Kafle, M Thapa Magar, I Cancarevic. Influence of microbiome and antibiotics on the efficacy of immune checkpoint inhibitors. Cureus 2021; 13( 8): e16829
https://doi.org/10.7759/cureus.16829
124 J Qu, M Jiang, L Wang, D Zhao, K Qin, Y Wang, J Tao, X Zhang. Mechanism and potential predictive biomarkers of immune checkpoint inhibitors in NSCLC. Biomed Pharmacother 2020; 127 : 109996
https://doi.org/10.1016/j.biopha.2020.109996
[1] Yong Fan, Yan Geng, Lin Shen, Zhuoli Zhang. Advances on immune-related adverse events associated with immune checkpoint inhibitors[J]. Front. Med., 2021, 15(1): 33-42.
[2] Yuqiu Han, Xiangyang Jiang, Qi Ling, Li Wu, Pin Wu, Ruiqi Tang, Xiaowei Xu, Meifang Yang, Lijiang Zhang, Weiwei Zhu, Baohong Wang, Lanjuan Li. Antibiotics-mediated intestinal microbiome perturbation aggravates tacrolimus-induced glucose disorders in mice[J]. Front. Med., 2019, 13(4): 471-481.
[3] Hong Zhang, Ying Chang, Qingqing Zheng, Rong Zhang, Cheng Hu, Weiping Jia. Altered intestinal microbiota associated with colorectal cancer[J]. Front. Med., 2019, 13(4): 461-470.
[4] Chenfei Zhou, Jun Zhang. Immunotherapy-based combination strategies for treatment of gastrointestinal cancers: current status and future prospects[J]. Front. Med., 2019, 13(1): 12-23.
[5] Ruiting Han, Junli Ma, Houkai Li. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota[J]. Front. Med., 2018, 12(6): 645-657.
[6] Xiaojiao Zheng, Shouli Wang, Wei Jia. Calorie restriction and its impact on gut microbial composition and global metabolism[J]. Front. Med., 2018, 12(6): 634-644.
[7] Fang Fang, Weihua Xiao, Zhigang Tian. Challenges of NK cell-based immunotherapy in the new era[J]. Front. Med., 2018, 12(4): 440-450.
[8] Chenyang Wang, Qiurong Li, Jieshou Li. Gut microbiota and its implications in small bowel transplantation[J]. Front. Med., 2018, 12(3): 239-248.
[9] Ying Ma,Nanxue Zhang,Shi Wu,Haihui Huang,Yanpei Cao. Antimicrobial activity of topical agents against Propionibacterium acnes: an in vitro study of clinical isolates from a hospital in Shanghai, China[J]. Front. Med., 2016, 10(4): 517-521.
[10] Min Cheng, Jian Zhang, Wen Jiang, Yongyan Chen, Zhigang Tian. Natural killer cell lines in tumor immunotherapy[J]. Front Med, 2012, 6(1): 56-66.
[11] Hui QIU, Hui ZHANG, Zuohua FENG. 4-1BBL expressed by eukaryotic cells activates immune cells and suppresses the progression of murine tumor[J]. Front Med Chin, 2009, 3(1): 20-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed