|
|
FGF13 suppresses acute myeloid leukemia by regulating bone marrow niches |
Ran Li, Kai Xue( ), Junmin Li( ) |
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China |
|
|
Abstract Fibroblast growth factor 13 (FGF13) is aberrantly expressed in multiple cancer types, suggesting its essential role in tumorigenesis. Hence, we aimed to explore its definite role in the development of acute myeloid leukemia (AML) and emphasize its associations with bone marrow niches. Results showed that FGF13 was lowly expressed in patients with AML and that its elevated expression was related to prolonged overall survival (OS). Univariate and multivariate Cox regression analyses identified FGF13 as an independent prognostic factor. A prognostic nomogram integrating FGF13 and clinicopathologic variables was constructed to predict 1-, 3-, and 5-year OS. Gene mutation and functional analyses indicated that FGF13 was not associated with AML driver mutations but was related to bone marrow niches. As for immunity, FGF13 was remarkably associated with T cell count, immune checkpoint genes, and cytokines. In addition, FGF13 overexpression substantially inhibited the growth and significantly induced the early apoptosis of AML cells. The xenograft study indicated that FGF13 overexpression prolonged the survival of recipient mice. Overall, FGF13 could serve as an independent prognostic factor for AML, and it was closely related to the bone marrow microenvironment.
|
Keywords
acute myeloid leukemia
FGF13
prognosis
immune-related genes
bone marrow niches
|
Corresponding Author(s):
Kai Xue,Junmin Li
|
Just Accepted Date: 29 July 2022
Online First Date: 01 September 2022
Issue Date: 16 January 2023
|
|
1 |
H Döhner, AH Wei, B Löwenberg. Towards precision medicine for AML. Nat Rev Clin Oncol 2021; 18( 9): 577– 590
https://doi.org/10.1038/s41571-021-00509-w
pmid: 34006997
|
2 |
SA Assi, MR Imperato, DJL Coleman, A Pickin, S Potluri, A Ptasinska, PS Chin, H Blair, P Cauchy, SR James, J Zacarias-Cabeza, LN Gilding, A Beggs, S Clokie, JC Loke, P Jenkin, A Uddin, R Delwel, SJ Richards, M Raghavan, MJ Griffiths, O Heidenreich, PN Cockerill, C Bonifer. Subtype-specific regulatory network rewiring in acute myeloid leukemia. Nat Genet 2019; 51( 1): 151– 162
https://doi.org/10.1038/s41588-018-0270-1
pmid: 30420649
|
3 |
H Döhner, E Estey, D Grimwade, S Amadori, FR Appelbaum, T Büchner, H Dombret, BL Ebert, P Fenaux, RA Larson, RL Levine, F Lo-Coco, T Naoe, D Niederwieser, GJ Ossenkoppele, M Sanz, J Sierra, MS Tallman, HF Tien, AH Wei, B Löwenberg, CD Bloomfield. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017; 129( 4): 424– 447
https://doi.org/10.1182/blood-2016-08-733196
pmid: 27895058
|
4 |
S Méndez-Ferrer, D Bonnet, DP Steensma, RP Hasserjian, IM Ghobrial, JG Gribben, M Andreeff, DS Krause. Bone marrow niches in haematological malignancies. Nat Rev Cancer 2020; 20( 5): 285– 298
https://doi.org/10.1038/s41568-020-0245-2
pmid: 32112045
|
5 |
SJC Mancini, K Balabanian, I Corre, J Gavard, G Lazennec, Bousse-Kerdilès MC Le, F Louache, V Maguer-Satta, NM Mazure, F Mechta-Grigoriou, JF Peyron, V Trichet, O Herault. Deciphering tumor niches: lessons from solid and hematological malignancies. Front Immunol 2021; 12 : 766275
https://doi.org/10.3389/fimmu.2021.766275
pmid: 34858421
|
6 |
C Degirolamo, C Sabbà, A Moschetta. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 2016; 15( 1): 51– 69
https://doi.org/10.1038/nrd.2015.9
pmid: 26567701
|
7 |
SK Olsen, M Garbi, N Zampieri, AV Eliseenkova, DM Ornitz, M Goldfarb, M Mohammadi. Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J Biol Chem 2003; 278( 36): 34226– 34236
https://doi.org/10.1074/jbc.M303183200
pmid: 12815063
|
8 |
EQ Wei, DS Sinden, L Mao, H Zhang, C Wang, GS Pitt. Inducible Fgf13 ablation enhances caveolae-mediated cardioprotection during cardiac pressure overload. Proc Natl Acad Sci USA 2017; 114( 20): E4010– E4019
https://doi.org/10.1073/pnas.1616393114
pmid: 28461495
|
9 |
QF Wu, L Yang, S Li, Q Wang, XB Yuan, X Gao, L Bao, X Zhang. Fibroblast growth factor 13 is a microtubule-stabilizing protein regulating neuronal polarization and migration. Cell 2012; 149( 7): 1549– 1564
https://doi.org/10.1016/j.cell.2012.04.046
pmid: 22726441
|
10 |
H Lu, X Shi, G Wu, J Zhu, C Song, Q Zhang, G Yang. FGF13 regulates proliferation and differentiation of skeletal muscle by down-regulating Spry1. Cell Prolif 2015; 48( 5): 550– 560
https://doi.org/10.1111/cpr.12200
pmid: 26230950
|
11 |
T Okada, K Murata, R Hirose, C Matsuda, T Komatsu, M Ikekita, M Nakawatari, F Nakayama, M Wakatsuki, T Ohno, S Kato, T Imai, T Imamura. Upregulated expression of FGF13/FHF2 mediates resistance to platinum drugs in cervical cancer cells. Sci Rep 2013; 3( 1): 2899
https://doi.org/10.1038/srep02899
pmid: 24113164
|
12 |
H Lu, M Yin, L Wang, J Cheng, W Cheng, H An, T Zhang. FGF13 interaction with SHCBP1 activates AKT-GSK3α/β signaling and promotes the proliferation of A549 cells. Cancer Biol Ther 2020; 21( 11): 1014– 1024
https://doi.org/10.1080/15384047.2020.1824512
pmid: 33064958
|
13 |
CN Johnstone, AD Pattison, PF Harrison, DR Powell, P Lock, M Ernst, RL Anderson, TH Beilharz. FGF13 promotes metastasis of triple-negative breast cancer. Int J Cancer 2020; 147( 1): 230– 243
https://doi.org/10.1002/ijc.32874
pmid: 31957002
|
14 |
G Bindea, B Mlecnik, M Tosolini, A Kirilovsky, M Waldner, AC Obenauf, H Angell, T Fredriksen, L Lafontaine, A Berger, P Bruneval, WH Fridman, C Becker, F Pagès, MR Speicher, Z Trajanoski, J Galon. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013; 39( 4): 782– 795
https://doi.org/10.1016/j.immuni.2013.10.003
pmid: 24138885
|
15 |
R Li, L Zhang, Z Qin, Y Wei, Z Deng, C Zhu, J Tang, L Ma. High LINC00536 expression promotes tumor progression and poor prognosis in bladder cancer. Exp Cell Res 2019; 378( 1): 32– 40
https://doi.org/10.1016/j.yexcr.2019.03.009
pmid: 30851243
|
16 |
PE Czabotar, G Lessene, A Strasser, JM Adams. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014; 15( 1): 49– 63
https://doi.org/10.1038/nrm3722
pmid: 24355989
|
17 |
M Konopleva, A Letai. BCL-2 inhibition in AML: an unexpected bonus?. Blood 2018; 132( 10): 1007– 1012
https://doi.org/10.1182/blood-2018-03-828269
pmid: 30037885
|
18 |
Y Otani, T Ichikawa, K Kurozumi, S Inoue, J Ishida, T Oka, T Shimizu, Y Tomita, Y Hattori, A Uneda, Y Matsumoto, H Michiue, I Date. Fibroblast growth factor 13 regulates glioma cell invasion and is important for bevacizumab-induced glioma invasion. Oncogene 2018; 37( 6): 777– 786
https://doi.org/10.1038/onc.2017.373
pmid: 29059154
|
19 |
K Turkowski, F Herzberg, S Günther, D Brunn, A Weigert, M Meister, T Muley, M Kriegsmann, MA Schneider, H Winter, M Thomas, F Grimminger, W Seeger, Pullamsetti S Savai, R Savai. Fibroblast growth factor-14 acts as tumor suppressor in lung adenocarcinomas. Cells 2020; 9( 8): E1755
https://doi.org/10.3390/cells9081755
pmid: 32707902
|
20 |
T Su, L Huang, N Zhang, S Peng, X Li, G Wei, E Zhai, Z Zeng, L Xu. FGF14 functions as a tumor suppressor through inhibiting PI3K/AKT/mTOR pathway in colorectal cancer. J Cancer 2020; 11( 4): 819– 825
https://doi.org/10.7150/jca.36316
pmid: 31949485
|
21 |
X Wu, M Li, Y Li, Y Deng, S Ke, F Li, Y Wang, S Zhou. Fibroblast growth factor 11 (FGF11) promotes non-small cell lung cancer (NSCLC) progression by regulating hypoxia signaling pathway. J Transl Med 2021; 19( 1): 353
https://doi.org/10.1186/s12967-021-03018-7
pmid: 34404435
|
22 |
J Li, J Cao, P Li, Z Yao, R Deng, L Ying, J Tian. Construction of a novel mRNA-signature prediction model for prognosis of bladder cancer based on a statistical analysis. BMC Cancer 2021; 21( 1): 858
https://doi.org/10.1186/s12885-021-08611-z
pmid: 34315402
|
23 |
K Li, FR Tay, CKY Yiu. The past, present and future perspectives of matrix metalloproteinase inhibitors. Pharmacol Ther 2020; 207 : 107465
https://doi.org/10.1016/j.pharmthera.2019.107465
pmid: 31863819
|
24 |
J Pietrzak, M Mirowski, R Świechowski, D Wodziński, A Wosiak, K Michalska, E Balcerczak. Importance of altered gene expression of metalloproteinases 2, 9, and 16 in acute myeloid leukemia: preliminary study. J Oncol 2021; 2021 : 6697975
https://doi.org/10.1155/2021/6697975
pmid: 34035811
|
25 |
PL Azevedo, NCA Oliveira, S Corrêa, MTL Castelo-Branco, E Abdelhay, R Binato. Canonical WNT signaling pathway is altered in mesenchymal stromal cells from acute myeloid leukemia patients and is implicated in BMP4 down-regulation. Transl Oncol 2019; 12( 4): 614– 625
https://doi.org/10.1016/j.tranon.2019.01.003
pmid: 30703678
|
26 |
JC Marini, A Forlino, HP Bächinger, NJ Bishop, PH Byers, A Paepe, F Fassier, N Fratzl-Zelman, KM Kozloff, D Krakow, K Montpetit, O Semler. Osteogenesis imperfecta. Nat Rev Dis Primers 2017; 3( 1): 17052
https://doi.org/10.1038/nrdp.2017.52
pmid: 28820180
|
27 |
P Lu, VM Weaver, Z Werb. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012; 196( 4): 395– 406
https://doi.org/10.1083/jcb.201102147
pmid: 22351925
|
28 |
W Chen, Z Yang. Identification of differentially expressed genes reveals BGN predicting overall survival and tumor immune infiltration of gastric cancer. Comput Math Methods Med 2021; 2021 : 5494840
https://doi.org/10.1155/2021/5494840
pmid: 34868341
|
29 |
YY Jia, Y Yu, HJ Li. POSTN promotes proliferation and epithelial-mesenchymal transition in renal cell carcinoma through ILK/AKT/mTOR pathway. J Cancer 2021; 12( 14): 4183– 4195
https://doi.org/10.7150/jca.51253
pmid: 34093819
|
30 |
P Charoentong, F Finotello, M Angelova, C Mayer, M Efremova, D Rieder, H Hackl, Z Trajanoski. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 2017; 18( 1): 248– 262
https://doi.org/10.1016/j.celrep.2016.12.019
pmid: 28052254
|
31 |
IA Smith, BR Knezevic, JU Ammann, DA Rhodes, D Aw, DB Palmer, IH Mather, J Trowsdale. BTN1A1, the mammary gland butyrophilin, and BTN2A2 are both inhibitors of T cell activation. J Immunol 2010; 184( 7): 3514– 3525
https://doi.org/10.4049/jimmunol.0900416
pmid: 20208008
|
32 |
Z Jiang, F Liu. Butyrophilin-like 9 (BTNL9) suppresses invasion and correlates with favorable prognosis of uveal melanoma. Med Sci Monit 2019; 25 : 3190– 3198
https://doi.org/10.12659/MSM.914074
pmid: 31039142
|
33 |
Q Mo, K Xu, C Luo, Q Zhang, L Wang, G Ren. BTNL9 is frequently downregulated and inhibits proliferation and metastasis via the P53/CDC25C and P53/GADD45 pathways in breast cancer. Biochem Biophys Res Commun 2021; 553 : 17– 24
https://doi.org/10.1016/j.bbrc.2021.03.022
pmid: 33756341
|
34 |
C Alfaro, MF Sanmamed, ME Rodríguez-Ruiz, Á Teijeira, C Oñate, Á González, M Ponz, KA Schalper, JL Pérez-Gracia, I Melero. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev 2017; 60 : 24– 31
https://doi.org/10.1016/j.ctrv.2017.08.004
pmid: 28866366
|
35 |
D Aldinucci, C Borghese, N Casagrande. The CCL5/CCR5 axis in cancer progression. Cancers (Basel) 2020; 12( 7): E1765
https://doi.org/10.3390/cancers12071765
pmid: 32630699
|
36 |
M Gulubova, E Aleksandrova, T Vlaykova. Promoter polymorphisms in TGFB1 and IL10 genes influence tumor dendritic cells infiltration, development and prognosis of colorectal cancer. J Gene Med 2018; 20( 2–3): e3005
https://doi.org/10.1002/jgm.3005
pmid: 29388277
|
37 |
DJ Propper, FR Balkwill. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol 2022; 19( 4): 237– 253
https://doi.org/10.1038/s41571-021-00588-9
pmid: 34997230
|
38 |
K Sarter, E Leimgruber, F Gobet, V Agrawal, I Dunand-Sauthier, E Barras, B Mastelic-Gavillet, A Kamath, P Fontannaz, L Guéry, FV Duraes, C Lippens, U Ravn, ML Santiago-Raber, G Magistrelli, N Fischer, CA Siegrist, S Hugues, W Reith. Btn2a2, a T cell immunomodulatory molecule coregulated with MHC class II genes. J Exp Med 2016; 213( 2): 177– 187
https://doi.org/10.1084/jem.20150435
pmid: 26809444
|
39 |
G Trinchieri. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3( 2): 133– 146
https://doi.org/10.1038/nri1001
pmid: 12563297
|
40 |
DJ Propper, FR Balkwill. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol 2022; 19( 4): 237– 253
https://doi.org/10.1038/s41571-021-00588-9
pmid: 34997230
|
41 |
J Crespo, K Wu, W Li, I Kryczek, T Maj, L Vatan, S Wei, AW Opipari, W Zou. Human naive T cells express functional CXCL8 and promote tumorigenesis. J Immunol 2018; 201( 2): 814– 820
https://doi.org/10.4049/jimmunol.1700755
pmid: 29802127
|
42 |
FP Santos, H Kantarjian, J Cortes, A Quintas-Cardama. Bafetinib, a dual Bcr-Abl/Lyn tyrosine kinase inhibitor for the potential treatment of leukemia. Curr Opin Investig Drugs 2010; 11( 12): 1450– 1465
pmid: 21154127
|
43 |
A Lerga, C Richard, MD Delgado, M Cañelles, P Frade, MA Cuadrado, J León. Apoptosis and mitotic arrest are two independent effects of the protein phosphatases inhibitor okadaic acid in K562 leukemia cells. Biochem Biophys Res Commun 1999; 260( 1): 256– 264
https://doi.org/10.1006/bbrc.1999.0852
pmid: 10381376
|
44 |
TM Horton, SM Blaney, AM Langevin, J Kuhn, B Kamen, SL Berg, M Bernstein, S Weitman. Phase I trial and pharmacokinetic study of raltitrexed in children with recurrent or refractory leukemia: a pediatric oncology group study. Clin Cancer Res 2005; 11( 5): 1884– 1889
https://doi.org/10.1158/1078-0432.CCR-04-1676
pmid: 15756014
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|