Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (6) : 827-858    https://doi.org/10.1007/s11684-022-0948-8
REVIEW
Cell therapy for the treatment of reproductive diseases and infertility: an overview from the mechanism to the clinic alongside diagnostic methods
Kosar Babaei1, Mohsen Aziminezhad1,2, Seyedeh Elham Norollahi3, Sogand Vahidi4, Ali Akbar Samadani5()
1. Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
2. UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
3. Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
4. Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
5. Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
 Download: PDF(3344 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Infertility is experienced by 8%12% of adults in their reproductive period globally and has become a prevalent concern. Besides routine therapeutic methods, stem cells are rapidly being examined as viable alternative therapies in regenerative medicine and translational investigation. Remarkable progress has been made in understanding the biology and purpose of stem cells. The affected pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are further studied for their possible use in reproductive medicine, particularly for infertility induced by premature ovarian insufficiency and azoospermia. Accordingly, this study discusses current developments in the use of some kinds of MSCs such as adipose-derived stem cells, bone marrow stromal cells, umbilical cord MSCs, and menstrual blood MSCs. These methods have been used to manage ovarian and uterine disorders, and each technique presents a novel method for the therapy of infertility.

Keywords infertility      stem cell therapy      mesenchymal stem cells      pluripotent stem cells     
Corresponding Author(s): Ali Akbar Samadani   
Just Accepted Date: 12 October 2022   Online First Date: 22 December 2022    Issue Date: 16 January 2023
 Cite this article:   
Kosar Babaei,Mohsen Aziminezhad,Seyedeh Elham Norollahi, et al. Cell therapy for the treatment of reproductive diseases and infertility: an overview from the mechanism to the clinic alongside diagnostic methods[J]. Front. Med., 2022, 16(6): 827-858.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-022-0948-8
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I6/827
Fig.1  Different parameters including nanoparticle carrying MSCs, neural stem cells (NSCs), oncolytic viruses carrying MSCs/NSCs, and genetically altered MSCs/NSCs are associated with the treatment of cancer cells in with corporation chemotherapy.
Identifier Situation Interventions Conditions Trial results Position Reference
NCT02240823 Unknown Adipose-derived stem cells (AdMSCs) Post-radical prostatectomy erectile dysfunction Intracavernous injection of AdMSC is a safe process and resulted in the recovery of the erectile role Odense University Hospital [252]
NCT02603744 Unknown Intraovarian injection of adipose-derived stromal cells (ADSCs) Primary ovarian insufficiency Intraovarian engrafting of ADSCs is safe and possibly related to a decrease in FSH level Royan Institute [253]
NCT02696889 Active Therapeutic potential of autologous stem cell Premature ovarian insufficiency (POI), diminished ovarian reserve A description of two subjects showed considerable progress in clinical characteristics associated with POI. The size and estrogen production increased in the MSC engrafted ovary The University of Illinois at Chicago [254]
NCT00429494 Completed Approach: hematopoietic stem cell transplantation (Hsct)Drug: leuprolide acetate Amenorrhea primary ovarian insufficiency Informed that leuprolide could not maintain an ovarian role in HSCT patients UT MD Anderson Cancer Center, United States [255]
NCT02313415 Completed Approach: Umbilical cord MSCs Infertility with intrauterine adhesions Demonstrated that transplantation of clinical-grade human UC MSC could enhance the proliferative and differentiation efficiency of the endometrium Nanjing Drum Tower Hospital, China [256]
NCT02008799 Recruiting Intra testicular artery injection of bone marrow stem cell Azoospermia None Man Clinic for Andrology, Male Infertility, and Sexual Dysfunction
NCT02204358 Unknown Collagen scaffolds, loaded with human bone marrow-derived stem cells Endometrial dysplasia, intrauterine adhesion (IUA) None Nanjing University Medical School
NCT03207412 Unknown Human amniotic epithelial cells (hAECs) Primary ovarian insufficiency None Chongqing Medical University, China
NCT03592849 Registering by invitation Collagen scaffolds, loaded with human bone marrow-derived MSC Infertile women with thin endometrium None Nanjing Drum Tower Hospital, China
NCT02372474 Completed Biological: stem cell Primary ovarian insufficiency None Al Azhar University, Cairo, Egypt
NCT04009473 Registering by invitation SEGOVA method involves stem cell treatment, PPR therapy, and growth factor None Multicenter
NCT02414295 Completed MSC injection Klinefelter syndrome (KS) None Man Clinic for Andrology and Male Infertility, Cairo, Egypt
NCT04676269 Recruiting Amnion bilayer and stem cell combination treatment Infertile patients with thin endometrium None Indonesia University
NCT01742533 Unknown Biological: human umbilical cord MSCs and human cord blood mononuclear cellsDrug: hormone replacement treatment Primary ovarian insufficiency None Shenzhen People’s Hospital, Shenzhen, Guangdong, China
NCT04706312 Not yet recruiting Human amniotic epithelial cells (hAECs) Diminished ovarian reserve (DOR) None Nanjing Medical University
NCT03166189 Completed Biological: bone marrow–derived MSCs Asherman syndrome None D.O. Ott Research Institute of Obstetrics, Gynecology, Russian Federation
NCT02151890 Completed Biological: stem cell Primary ovarian insufficiency None Al Azhar University, Cairo, Egypt
NCT02041910 Unknown Derived stem cells Azoospermia None Hesham Saeed Elshaer, El-Rayadh Fertility Centre
NCT02641769 Recruiting Intratesticular transplantation of autologous stem cells Non-obstructive azoospermia None Stem Cells of Arabia, Amman, Jordan
NCT03069209 Active Biological: stem cell Primary ovarian insufficiency None Stem Cells Arabia, Amman, Jordan
NCT02713854 Recruiting Human embryonic stem cell-derived trophoblastic spheroids as a predictive instrument Subfertility None The University of Hong Kong
NCT02062931 Unknown Biological: stem cell Primary ovarian insufficiency None Al-Azhar University hospitals, Egypt
NCT02414308 Unknown Adipose tissue stem cells (ASCs) injection Erectile dysfunction (ED) None Man Clinic for Andrology, Male Infertility, and Sexual Dysfunction
NCT02025270 Unknown Azoospermic patients Azoospermic patients Bone marrow-derived MSCs Al Azhar University, Egypt
Tab.1  Clinical trials corresponding stem cell treatment accomplished or underway for modification of infertility
Fig.2  General view of mesenchymal stem cells therapy and introductions of some cellular and molecular elements in this pathway.
Origin Content Role Reference
Human UCMSC-EV miR-21-5p, miR-146a-5p Improved ovarian role in old mice [257]
Human UCMSC-EV miR-147 Repressed M1 [258]
Human ADSC-EV miR-126, miR-146b, miR-199a, miR-223 Generated M2 polarization [259]
Human UCMSC-EV miR-17-5p Enhanced ovarian role, reducing ROS level [260]
Human ADSC-EV miR-323-3p Anti-apoptosis of CCs [192]
Human WJMSC-EV Catalase Reduced ROS level [261]
Human UCMSC-EV TSG-6 Anti-inflammation [262]
Human AMSC-EV miR-320a Reduced ROS level [182]
Human AFMSC-EV miR-146a-5p, miR-548e-5p Anti-inflammation [263]
Human UCMSC-EV Let7b Phenotypic transformation of M1 to M2 inhibited pro-fibrotic genes (TGF-b1/TGFbR1, collagen IVa1) [264,265]
Human BMSC-EV EGF, FGF, PDGF, NF?B signaling proteins Generated angiogenesis [266]
Human BMSC-EV STAT3, Wnt3a Migration, elevated angiogenesis and fibroblast proliferation [266]
Human BMSC-EV MFG-E8 Attenuated renal fibrosis partly by interfering with the RhoA/ROCK pathway [257]
Human ADSC-EV SCF, MFG-E8, c-kit, ANGPTL1, thrombopoietin Promoted angiogenesis [267]
Human BMSC-EV miR-216a-5p Promoted M2 polarization [257]
Human BMSC-EV IL-10 Anti-inflammation [268]
Human dental pulp MSC-EVs Jagged1 Induced angiogenesis [269 ]
Human ADSC-EV miR-30b, miR-125a Elevated angiogenesis through suppressing DLL4-Notch signaling pathway [270]
Human UCMSC-EV Wnt4 Improved angiogenesis by elevating Wnt4/b-catenin signaling [271]
Human BMSC-EV KGF Reduced inflammation and caused M2 polarization [272]
Human ADSC-EVMice BMSC-EV VEGF Improved neovascularization through elevating VEGF/VEGFR signaling pathway [268]
Rat BMSC-EV miR-130a Advanced angiogenesis [276]
Rat BMSC-EV miR-340 Attenuation endometrial fibrosis [273]
Rat AFMSC-EV miR-21 Enhanced ovarian role [179]
Rat BMSC-EV miR-144-5p [257]
Mice AFMSC-EV miR-10a Enhanced ovarian role and anti-apoptosis of GCs [176]
Mice BMSC-EV miR-210 Enhanced angiogenesis, limited fibrosis in ischemic hearts [270]
Mice BMSC-EV HGF Stabilized endothelial barrier role [270]
Mice BMSC-EV miR-644-5p Anti-apoptosis of GCs [274]
MSC-EVMice BMSC-EV miR-210 Elevating angiogenesis via VEGF pathway, ameliorating inflammation through miR-210/serpine1 axis [270]
Mouse BMSC-EV miR-182 Generated M2 polarization through targeting TLR4 [275]
Pig ADSC-EV Angptl4, Ephrin-B2, PDGFC, DOK2, Wnt7b Elevated angiogenesis [276]
Pig ADSC-EV ACVR1, MMP19 Matrix remodeling [276]
CMPC-MSC-Exo EMMPRIN Elevated angiogenesis [277]
EndMSC-EV Dog WJMSC-EV TGF-b Matrix remodeling, prevented CD4+ T cells activation [278]
MSC-EV CXCL2, CXCL8, DEFA1, HERC5, IFITM2,CXCL16 Recruited immune cells to proximity of MSC-EVs [279]
MSC-EV miR-21, miR-132, miR-222, IL-8 Elevated angiogenesis [280]
MSC-EV miR-29 Attenuation renal fibrosis and EMT through targeting PI3K/AKT signaling pathway [281]
MSC-EV miR-145 Attenuated EMT by suppressing TGF-b/smad signaling or repressing ZEB2 [281]
Tab.2  Different microRNAs and genes alongside their stem cell origination and their performance
Fig.3  In this picture, the involvement of peripheral blood mononuclear cells and human amniotic epithelial cells are shown with another cellular.
MSC kinds Model Cause Therapy Results Reference
MB-MSCs Endometrial disorders Human Severe aortic stenosis (AS) Provide via the cervix to the fundus of the uterus ↑ Endometrial thickness (EMT) [282]
Rat Intrauterine adhesion (IUA) is caused by mechanical injury Local injection ↑ Pregnancy rate [79]
Ovarian failure Mice Cisplatin-induced POF Local injection ↑ Fibroblast growth factor 2↑ Ovarian role [283]
Mice CTX-induced POF Local injection ↓Hormone secretion↑Ovarian weight [102]
Bone marrow stromal cells Endometrial disorders Human Refractory aortic stenosis (AS) Uterine artery injection Rebuild the endometrium [113]
Mice 24-gauge needle-caused Marked with SPIOs local/tail vein injection ↑Endometrial proliferation [284]
Ovarian failure Mice CTX-induced ovarian disorders Local injection Repair ovarian hormone exposition [285]
Rabbit CTX-induced ovarian disorders Intravenous injection ↑Ovarian role [286]
UC-MSCs Endometrial disorders Human Uterine niche Local intramuscular injection ↑ Uterine scar rebuilds↓Uterine niche occurrence [287]
Rat 95% ethanol-induced endometrial injury Tail vein injection ↓ Endometrial fibrosis↑ Fertility and angiogenesis [84]
Endometrial disorders Rat Perimenopausal ovary Tail vein injection ↓ Follicle-exciting hormone↑ Estradiol and follicle number [288]
Rat Paclitaxel-induced POF Local injection ↓ Follicle-exciting hormone↑ Estradiol and ovarian role [81]
Mice Busulfan CTX-induced primary ovarian failure Local injection ↑ Ovarian role and fertility [79]
Mice CTX-induced POF Tail vein injection ↑Estradiol, weight of the ovaries [289]
Adipose-derived stem cells Endometrial disorders Rat Trichloroacetic acid-induced aortic stenosis (AS) Intraperitoneal injection ↑Endometrial proliferation↓Fibrosis [290]
Ovarian failure Rat TG-induced ovarian injury Collagen scaffold ↑Fertility [291]
Mice Cisplatin-cause ovarian disorder Local injection ↑Ovarian role [292]
Tab.3  MSC therapy is being used to improve female reproductive problems
Fig.4  Associations of extracellular vesicles and mesenchymal transfer in contraction with MSCs.
Nature of cells Immuno-rejection Self-renewal capacity Source of generation Clinical applications Ethical concerns
Mesenchymal stem cells Multipotent No Mesodermal-derived tissue, like adipose tissue, muscle, cartilage, bone Human somatic cells Widely utilized No ethical or moral concerns
Embryonic stem cells Pluripotent Yes Differentiate into results of main germ layers Inner cell mass cells of blastocysts Limited Ethical and moral concerns present
Spermatogonial stem cells Pluripotent Yes Differentiate into the results of all primary germ layers Testicular tissues Widely utilized No ethical or moral concerns
Induced pluripotent stem cells Pluripotent Yes Differentiate into the results of all primary germ layers Adipose tissue, bone marrow, cord blood Widely utilized No ethical or moral concerns
Tab.4  Stem cell features in infertility therapy
1 MG Hull, CM Glazener, NJ Kelly, DI Conway, PA Foster, RA Hinton, C Coulson, PA Lambert, EM Watt, KM Desai. Population study of causes, treatment, and outcome of infertility. Br Med J (Clin Res Ed) 1985; 291(6510): 1693–1697
https://doi.org/10.1136/bmj.291.6510.1693 pmid: 3935248
2 A Deroux, C Dumestre-Perard, C Dunand-Faure, L Bouillet, P Hoffmann. Female infertility and serum auto-antibodies: a systematic review. Clin Rev Allergy Immunol 2017; 53(1): 78–86
https://doi.org/10.1007/s12016-016-8586-z pmid: 27628237
3 L Holmberg, OE Iversen, CM Rudenstam, M Hammar, E Kumpulainen, J Jaskiewicz, J Jassem, D Dobaczewska, HE Fjosne, O Peralta, R Arriagada, M Holmqvist, J; HABITS Study Group Maenpaa. Increased risk of recurrence after hormone replacement therapy in breast cancer survivors. J Natl Cancer Inst 2008; 100(7): 475–482
https://doi.org/10.1093/jnci/djn058 pmid: 18364505
4 RFM Vermeulen, CM Korse, GG Kenter, MMA Brood-van Zanten, MV Beurden. Safety of hormone replacement therapy following risk-reducing salpingo-oophorectomy: systematic review of literature and guidelines. Climacteric 2019; 22(4): 352–360
https://doi.org/10.1080/13697137.2019.1582622 pmid: 30905183
5 Committee of American Society for Reproductive Medicine Practice. Multiple gestation associated with infertility therapy: an American Society for Reproductive Medicine Practice Committee opinion. Fertil Steril 2012; 97(4): 825–834
https://doi.org/10.1016/j.fertnstert.2011.11.048 pmid: 22192352
6 B Blum, N Benvenisty. The tumorigenicity of human embryonic stem cells. Adv Cancer Res 2008; 100: 133–158
https://doi.org/10.1016/S0065-230X(08)00005-5 pmid: 18620095
7 M Dominici, Blanc K Le, I Mueller, I Slaper-Cortenbach, F Marini, D Krause, R Deans, A Keating, Dj Prockop, E Horwitz. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315–317
https://doi.org/10.1080/14653240600855905 pmid: 16923606
8 HK Salem, C Thiemermann. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 2010; 28(3): 585–596
https://doi.org/10.1002/stem.269 pmid: 19967788
9 M Körbling, P Anderlini. Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter?. Blood 2001; 98(10): 2900–2908
https://doi.org/10.1182/blood.V98.10.2900 pmid: 11698269
10 Anker PS In’t, SA Scherjon, der Keur C Kleijburg-van, Groot-Swings GM de, FH Claas, WE Fibbe, HH Kanhai. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 2004; 22(7): 1338–1345
https://doi.org/10.1634/stemcells.2004-0058 pmid: 15579651
11 KR Hansen, AL He, AK Styer, RA Wild, S Butts, L Engmann, MP Diamond, RS Legro, C Coutifaris, R Alvero, RD Robinson, P Casson, GM Christman, H Huang, N Santoro, E Eisenberg, H; Eunice Kennedy Shriver National Institute of Child Health Zhang, Development Reproductive Medicine Network Human. Predictors of pregnancy and live-birth in couples with unexplained infertility after ovarian stimulation-intrauterine insemination. Fertil Steril 2016; 105(6): 1575–1583.e2
https://doi.org/10.1016/j.fertnstert.2016.02.020 pmid: 26949110
12 OA Asemota, P Klatsky. Access to infertility care in the developing world: the family promotion gap. Semin Reprod Med 2015; 33(1): 17–22
https://doi.org/10.1055/s-0034-1395274 pmid: 25565507
13 S Mourad, J Brown, C Farquhar. Interventions for the prevention of OHSS in ART cycles: an overview of Cochrane reviews. Cochrane Database Syst Rev 2017; 1(1): CD012103
https://doi.org/10.1002/14651858.CD012103.pub2 pmid: 28111738
14 M Kathrins, C Niederberger. Diagnosis and treatment of infertility-related male hormonal dysfunction. Nat Rev Urol 2016; 13(6): 309–323
https://doi.org/10.1038/nrurol.2016.62 pmid: 27091665
15 RP Smith, LI Lipshultz, JR Kovac. Stem cells, gene therapy, and advanced medical management hold promise in the treatment of male infertility. Asian J Androl 2016; 18(3): 364
https://doi.org/10.4103/1008-682X.179249 pmid: 27056350
16 D Chen, JJ Gell, Y Tao, E Sosa, AT Clark. Modeling human infertility with pluripotent stem cells. Stem Cell Res (Amst) 2017; 21: 187–192
https://doi.org/10.1016/j.scr.2017.04.005 pmid: 28431857
17 V Volarevic, S Bojic, J Nurkovic, A Volarevic, B Ljujic, N Arsenijevic, M Lako, M Stojkovic. Stem cells as new agents for the treatment of infertility: current and future perspectives and challenges. Biomed Res Int 2014; 2014: 507234
https://doi.org/10.1155/2014/507234 pmid: 24826378
18 K Yoshinaga, S Nishikawa, M Ogawa, S Hayashi, T Kunisada, T Fujimoto, S Nishikawa. Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 1991; 113(2): 689–699
https://doi.org/10.1242/dev.113.2.689 pmid: 1723681
19 K Kawamura, N Kawamura, AJ Hsueh. Activation of dormant follicles: a new treatment for premature ovarian failure?. Curr Opin Obstet Gynecol 2016; 28(3): 217–222
https://doi.org/10.1097/GCO.0000000000000268 pmid: 27022685
20 N Rozwadowska, D Fiszer, P Jedrzejczak, W Kosicki, M Kurpisz. Interleukin-1 superfamily genes expression in normal or impaired human spermatogenesis. Genes Immun 2007; 8(2): 100–107
https://doi.org/10.1038/sj.gene.6364356 pmid: 17215863
21 M Huleihel, E Lunenfeld. Regulation of spermatogenesis by paracrine/autocrine testicular factors. Asian J Androl 2004; 6(3): 259–268
pmid: 15273877
22 CE Naylor, C Bagnéris, PG DeCaen, A Sula, A Scaglione, DE Clapham, BA Wallace. Molecular basis of ion permeability in a voltage-gated sodium channel. EMBO J 2016; 35(8): 820–830
https://doi.org/10.15252/embj.201593285 pmid: 26873592
23 F Fang, Z Li, Q Zhao, H Li, C Xiong. Human induced pluripotent stem cells and male infertility: an overview of current progress and perspectives. Hum Reprod 2018; 33(2): 188–195
https://doi.org/10.1093/humrep/dex369 pmid: 29315416
24 J Hou, S Yang, H Yang, Y Liu, Y Liu, Y Hai, Z Chen, Y Guo, Y Gong, WQ Gao, Z Li, Z He. Generation of male differentiated germ cells from various types of stem cells. Reproduction 2014; 147(6): R179–R188
https://doi.org/10.1530/REP-13-0649 pmid: 24534952
25 C Eguizabal, N Montserrat, R Vassena, M Barragan, E Garreta, L Garcia-Quevedo, F Vidal, A Giorgetti, A Veiga, JC Izpisua Belmonte. Complete meiosis from human induced pluripotent stem cells. Stem Cells 2011; 29(8): 1186–1195
https://doi.org/10.1002/stem.672 pmid: 21681858
26 C Ramathal, J Durruthy-Durruthy, M Sukhwani, JE Arakaki, PJ Turek, KE Orwig, RA Reijo Pera. Fate of iPSCs derived from azoospermic and fertile men following xenotransplantation to murine seminiferous tubules. Cell Rep 2014; 7(4): 1284–1297
https://doi.org/10.1016/j.celrep.2014.03.067 pmid: 24794432
27 N Irie, L Weinberger, WW Tang, T Kobayashi, S Viukov, YS Manor, S Dietmann, JH Hanna, MA Surani. SOX17 is a critical specifier of human primordial germ cell fate. Cell 2015; 160(1–2): 253–268
https://doi.org/10.1016/j.cell.2014.12.013 pmid: 25543152
28 K Sasaki, S Yokobayashi, T Nakamura, I Okamoto, Y Yabuta, K Kurimoto, H Ohta, Y Moritoki, C Iwatani, H Tsuchiya, S Nakamura, K Sekiguchi, T Sakuma, T Yamamoto, T Mori, K Woltjen, M Nakagawa, T Yamamoto, K Takahashi, S Yamanaka, M Saitou. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 2015; 17(2): 178–194
https://doi.org/10.1016/j.stem.2015.06.014 pmid: 26189426
29 CA 4th Easley, BT Phillips, MM McGuire, JM Barringer, H Valli, BP Hermann, CR Simerly, A Rajkovic, T Miki, KE Orwig, GP Schatten. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep 2012; 2(3): 440–446
https://doi.org/10.1016/j.celrep.2012.07.015 pmid: 22921399
30 JJ Gell, AT Clark. Restoring fertility with human induced pluripotent stem cells: are we there yet?. Cell Stem Cell 2018; 23(6): 777–779
https://doi.org/10.1016/j.stem.2018.11.003 pmid: 30526878
31 F Sugawa, MJ Araúzo-Bravo, J Yoon, KP Kim, S Aramaki, G Wu, M Stehling, OE Psathaki, K Hübner, HR Schöler. Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile. EMBO J 2015; 34(8): 1009–1024
https://doi.org/10.15252/embj.201488049 pmid: 25750208
32 HN Sallam, SS Sadek, AF Agameya. Assisted hatching—a meta-analysis of randomized controlled trials. J Assist Reprod Genet 2003; 20(8): 332–342
https://doi.org/10.1023/A:1024865725713 pmid: 12948097
33 D Bharti, SJ Jang, SY Lee, SL Lee, GJ Rho. In vitro generation of oocyte like cells and their in vivo efficacy: how far we have been succeeded. Cells 2020; 9(3): 557
https://doi.org/10.3390/cells9030557 pmid: 32120836
34 P Wu, G Deng, X Sai, H Guo, H Huang, P Zhu. Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes. Biosci Rep 2021; 41(6): BSR20200833
https://doi.org/10.1042/BSR20200833 pmid: 33057659
35 AS Lee, C Tang, MS Rao, IL Weissman, JC Wu. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013; 19(8): 998–1004
https://doi.org/10.1038/nm.3267 pmid: 23921754
36 S Fernandez Tde, C de Souza Fernandez, AL Mencalha. Human induced pluripotent stem cells from basic research to potential clinical applications in cancer. Biomed Res Int 2013; 2013: 430290
https://doi.org/10.1155/2013/430290 pmid: 24288679
37 AA Samadani, A Keymoradzdeh, S Shams, A Soleymanpour, A Rashidy-Pour, H Hashemian, S Vahidi, SE Norollahi. CAR T-cells profiling in carcinogenesis and tumorigenesis: an overview of CAR T-cells cancer therapy. Int Immunopharmacol 2021; 90: 107201
https://doi.org/10.1016/j.intimp.2020.107201 pmid: 33249047
38 A Naji, N Rouas-Freiss, A Durrbach, ED Carosella, L Sensébé, F Deschaseaux. Concise review: combining human leukocyte antigen G and mesenchymal stem cells for immunosuppressant biotherapy. Stem Cells 2013; 31(11): 2296–2303
https://doi.org/10.1002/stem.1494 pmid: 23922260
39 A Trounson, C McDonald. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 2015; 17(1): 11–22
https://doi.org/10.1016/j.stem.2015.06.007 pmid: 26140604
40 N Desai, P Rambhia, A Gishto. Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reprod Biol Endocrinol 2015; 13(1): 9
https://doi.org/10.1186/s12958-015-0005-4 pmid: 25890180
41 J Kehler, K Hübner, S Garrett, HR Schöler. Generating oocytes and sperm from embryonic stem cells. Semin Reprod Med 2005; 23(3): 222–233
https://doi.org/10.1055/s-2005-872450 pmid: 16059828
42 Y Yuan, Q Zhou, H Wan, B Shen, X Wang, M Wang, C Feng, M Xie, T Gu, T Zhou, R Fu, X Huang, Q Zhou, J Sha, XY Zhao. Generation of fertile offspring from Kit(w)/Kit(wv) mice through differentiation of gene corrected nuclear transfer embryonic stem cells. Cell Res 2015; 25(7): 851–863
https://doi.org/10.1038/cr.2015.74 pmid: 26088417
43 J Wang, C Liu, M Fujino, G Tong, Q Zhang, XK Li, H Yan. Stem cells as a resource for treatment of infertility-related diseases. Curr Mol Med 2019; 19(8): 539–546
https://doi.org/10.2174/1566524019666190709172636 pmid: 31288721
44 K Kita, T Watanabe, K Ohsaka, H Hayashi, Y Kubota, Y Nagashima, I Aoki, H Taniguchi, T Noce, K Inoue, H Miki, N Ogonuki, H Tanaka, A Ogura, T Ogawa. Production of functional spermatids from mouse germline stem cells in ectopically reconstituted seminiferous tubules. Biol Reprod 2007; 76(2): 211–217
https://doi.org/10.1095/biolreprod.106.056895 pmid: 17065598
45 H Kubota, RL Brinster. Spermatogonial stem cells. Biol Reprod 2018; 99(1): 52–74
https://doi.org/10.1093/biolre/ioy077 pmid: 29617903
46 DM De Kretser, HW Baker. Infertility in men: recent advances and continuing controversies. J Clin Endocrinol Metab 1999; 84(10): 3443–3450
pmid: 10522977
47 M Kanatsu-Shinohara, J Lee, K Inoue, N Ogonuki, H Miki, S Toyokuni, M Ikawa, T Nakamura, A Ogura, T Shinohara. Pluripotency of a single spermatogonial stem cell in mice. Biol Reprod 2008; 78(4): 681–687
https://doi.org/10.1095/biolreprod.107.066068 pmid: 18199882
48 DJ McLean. Spermatogonial stem cell transplantation and testicular function. Cell Tissue Res 2005; 322(1): 21–31
https://doi.org/10.1007/s00441-005-0009-z pmid: 16047158
49 K Guan, K Nayernia, LS Maier, S Wagner, R Dressel, JH Lee, J Nolte, F Wolf, M Li, W Engel, G Hasenfuss. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006; 440(7088): 1199–1203
https://doi.org/10.1038/nature04697 pmid: 16565704
50 FK Hamra, N Schultz, KM Chapman, DM Grellhesl, JT Cronkhite, RE Hammer, DL Garbers. Defining the spermatogonial stem cell. Dev Biol 2004; 269(2): 393–410
https://doi.org/10.1016/j.ydbio.2004.01.027 pmid: 15110708
51 F Izadyar, J Wong, C Maki, J Pacchiarotti, T Ramos, K Howerton, C Yuen, S Greilach, HH Zhao, M Chow, YC Chow, J Rao, J Barritt, N Bar-Chama, A Copperman. Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod 2011; 26(6): 1296–1306
https://doi.org/10.1093/humrep/der026 pmid: 21349855
52 BP Hermann, M Sukhwani, F Winkler, JN Pascarella, KA Peters, Y Sheng, H Valli, M Rodriguez, M Ezzelarab, G Dargo, K Peterson, K Masterson, C Ramsey, T Ward, M Lienesch, A Volk, DK Cooper, AW Thomson, JE Kiss, MC Penedo, GP Schatten, S Mitalipov, KE Orwig. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell 2012; 11(5): 715–726
https://doi.org/10.1016/j.stem.2012.07.017 pmid: 23122294
53 J Koubova, DB Menke, Q Zhou, B Capel, MD Griswold, DC Page. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA 2006; 103(8): 2474–2479
https://doi.org/10.1073/pnas.0510813103 pmid: 16461896
54 MD Griswold. The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol 1998; 9(4): 411–416
https://doi.org/10.1006/scdb.1998.0203 pmid: 9813187
55 AG Byskov, M Fenger, L Westergaard, CY Andersen. Forskolin and the meiosis inducing substance synergistically initiate meiosis in fetal male germ cells. Mol Reprod Dev 1993; 34(1): 47–52
https://doi.org/10.1002/mrd.1080340108 pmid: 8418816
56 Y Zhu, HL Hu, P Li, S Yang, W Zhang, H Ding, RH Tian, Y Ning, LL Zhang, XZ Guo, ZP Shi, Z Li, Z He. Generation of male germ cells from induced pluripotent stem cells (iPS cells): an in vitro and in vivo study. Asian J Androl 2012; 14(4): 574–579
https://doi.org/10.1038/aja.2012.3 pmid: 22504877
57 CA 4th Easley, CR Simerly, G Schatten. Stem cell therapeutic possibilities: future therapeutic options for male-factor and female-factor infertility?. Reprod Biomed Online 2013; 27(1): 75–80
https://doi.org/10.1016/j.rbmo.2013.03.003 pmid: 23664220
58 J Johnson, J Canning, T Kaneko, JK Pru, JL Tilly. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 2004; 428(6979): 145–150
https://doi.org/10.1038/nature02316 pmid: 15014492
59 YA White, DC Woods, Y Takai, O Ishihara, H Seki, JL Tilly. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 2012; 18(3): 413–421
https://doi.org/10.1038/nm.2669 pmid: 22366948
60 CE Dunlop, EE Telfer, RA Anderson. Ovarian stem cells—potential roles in infertility treatment and fertility preservation. Maturitas 2013; 76(3): 279–283
https://doi.org/10.1016/j.maturitas.2013.04.017 pmid: 23693139
61 J Oatley, PA Hunt. Of mice and (wo)men: purified oogonial stem cells from mouse and human ovaries. Biol Reprod 2012; 86(6): 196
https://doi.org/10.1095/biolreprod.112.100297 pmid: 22402962
62 Y Niikura, T Niikura, JL Tilly. Aged mouse ovaries possess rare premeiotic germ cells that can generate oocytes following transplantation into a young host environment. Aging (Albany NY) 2009; 1(12): 971–978
https://doi.org/10.18632/aging.100105 pmid: 20157580
63 RA Anderson, WHB Wallace. Fertility preservation in girls and young women. Clin Endocrinol (Oxf) 2011; 75(4): 409–419
https://doi.org/10.1111/j.1365-2265.2011.04100.x pmid: 21575025
64 VA Prianishnikov. On the concept of stem cell and a model of functional-morphological structure of the endometrium. Contraception 1978; 18(3): 213–223
https://doi.org/10.1016/S0010-7824(78)80015-8 pmid: 569035
65 RW Chan, KE Schwab, CE Gargett. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 2004; 70(6): 1738–1750
https://doi.org/10.1095/biolreprod.103.024109 pmid: 14766732
66 CE Gargett, KE Schwab, RM Zillwood, HP Nguyen, D Wu. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 2009; 80(6): 1136–1145
https://doi.org/10.1095/biolreprod.108.075226 pmid: 19228591
67 Miguel-Gómez L de, S López-Martínez, E Francés-Herrero, A Rodríguez-Eguren, A Pellicer, I Cervelló. Stem cells and the endometrium: from the discovery of adult stem cells to pre-clinical models. Cells 2021; 10(3): 595
https://doi.org/10.3390/cells10030595 pmid: 33800355
68 A Akbar Samadani, A Keymoradzdeh, S Shams, A Soleymanpour, S Elham Norollahi, S Vahidi, A Rashidy-Pour, A Ashraf, E Mirzajani, K Khanaki, M Rahbar Taramsari, S Samimian, A Najafzadeh. Mechanisms of cancer stem cell therapy. Clin Chim Acta 2020; 510: 581–592
https://doi.org/10.1016/j.cca.2020.08.016 pmid: 32791136
69 S Rahimi, AM Roushandeh, A Ebrahimi, AA Samadani, Y Kuwahara, MH Roudkenar. CRISPR/Cas9-mediated knockout of Lcn2 effectively enhanced CDDP-induced apoptosis and reduced cell migration capacity of PC3 cells. Life Sci 2019; 231: 116586
https://doi.org/10.1016/j.lfs.2019.116586 pmid: 31220528
70 T Lapidot, I Petit. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 2002; 30(9): 973–981
https://doi.org/10.1016/S0301-472X(02)00883-4 pmid: 12225788
71 R Azizi, L Aghebati-Maleki, M Nouri, F Marofi, S Negargar, M Yousefi. Stem cell therapy in Asherman syndrome and thin endometrium: stem cell-based therapy. Biomed Pharmacother 2018; 102: 333–343
https://doi.org/10.1016/j.biopha.2018.03.091 pmid: 29571018
72 K Kato, M Yoshimoto, K Kato, S Adachi, A Yamayoshi, T Arima, K Asanoma, S Kyo, T Nakahata, N Wake. Characterization of side-population cells in human normal endometrium. Hum Reprod 2007; 22(5): 1214–1223
https://doi.org/10.1093/humrep/del514 pmid: 17283036
73 X Meng, TE Ichim, J Zhong, A Rogers, Z Yin, J Jackson, H Wang, W Ge, V Bogin, KW Chan, B Thébaud, NH Riordan. Endometrial regenerative cells: a novel stem cell population. J Transl Med 2007; 5(1): 57
https://doi.org/10.1186/1479-5876-5-57 pmid: 18005405
74 CE Gargett, PA Rogers. Human endometrial angiogenesis. Reproduction 2001; 121(2): 181–186
https://doi.org/10.1530/rep.0.1210181 pmid: 11226042
75 A Numao, K Hosono, T Suzuki, I Hayashi, S Uematsu, S Akira, Y Ogino, H Kawauchi, N Unno, M Majima. The inducible prostaglandin E synthase mPGES-1 regulates growth of endometrial tissues and angiogenesis in a mouse implantation model. Biomed Pharmacother 2011; 65(1): 77–84
https://doi.org/10.1016/j.biopha.2010.12.008 pmid: 21247731
76 EF Wolff, L Mutlu, EE Massasa, JD Elsworth, Redmond D Jr Eugene, HS Taylor. Endometrial stem cell transplantation in MPTP-exposed primates: an alternative cell source for treatment of Parkinson’s disease. J Cell Mol Med 2015; 19(1): 249–256
https://doi.org/10.1111/jcmm.12433 pmid: 25283241
77 X Santamaria, EE Massasa, Y Feng, E Wolff, HS Taylor. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol Ther 2011; 19(11): 2065–2071
https://doi.org/10.1038/mt.2011.173 pmid: 21878900
78 Q Xie, X Xiong, N Xiao, K He, M Chen, J Peng, X Su, H Mei, Y Dai, D Wei, G Lin, L Cheng. Mesenchymal stem cells alleviate DHEA-induced polycystic ovary syndrome (PCOS) by inhibiting inflammation in mice. Stem Cells Int 2019; 2019: 9782373
https://doi.org/10.1155/2019/9782373 pmid: 31611920
79 SA Mohamed, S Shalaby, S Brakta, L Elam, A Elsharoud, A Al-Hendy. Umbilical cord blood mesenchymal stem cells as an infertility treatment for chemotherapy induced premature ovarian insufficiency. Biomedicines 2019; 7(1): 7
https://doi.org/10.3390/biomedicines7010007 pmid: 30669278
80 D Song, Y Zhong, C Qian, Q Zou, J Ou, Y Shi, L Gao, G Wang, Z Liu, H Li, H Ding, H Wu, F Wang, J Wang, H Li. Human umbilical cord mesenchymal stem cells therapy in cyclophosphamide-induced premature ovarian failure rat model. Biomed Res Int 2016; 2016: 2517514
https://doi.org/10.1155/2016/2517514 pmid: 27047962
81 AK Elfayomy, SM Almasry, SA El-Tarhouny, MA Eldomiaty. Human umbilical cord blood-mesenchymal stem cells transplantation renovates the ovarian surface epithelium in a rat model of premature ovarian failure: possible direct and indirect effects. Tissue Cell 2016; 48(4): 370–382
https://doi.org/10.1016/j.tice.2016.05.001 pmid: 27233913
82 C Zhang. The roles of different stem cells in premature ovarian failure. Curr Stem Cell Res Ther 2020; 15(6): 473–481
https://doi.org/10.2174/1574888X14666190314123006 pmid: 30868961
83 Q Shi, J Gao, Y Jiang, B Sun, W Lu, M Su, Y Xu, X Yang, Y Zhang. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into endometrial cells. Stem Cell Res Ther 2017; 8(1): 246
https://doi.org/10.1186/s13287-017-0700-5 pmid: 29096715
84 L Zhang, Y Li, CY Guan, S Tian, XD Lv, JH Li, X Ma, HF Xia. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase. Stem Cell Res Ther 2018; 9(1): 36
https://doi.org/10.1186/s13287-018-0777-5 pmid: 29433563
85 L Xu, L Ding, L Wang, Y Cao, H Zhu, J Lu, X Li, T Song, Y Hu, J Dai. Umbilical cord-derived mesenchymal stem cells on scaffolds facilitate collagen degradation via upregulation of MMP-9 in rat uterine scars. Stem Cell Res Ther 2017; 8(1): 84
https://doi.org/10.1186/s13287-017-0535-0 pmid: 28420433
86 L Ding, G Yan, B Wang, L Xu, Y Gu, T Ru, X Cui, L Lei, J Liu, X Sheng, B Wang, C Zhang, Y Yang, R Jiang, J Zhou, N Kong, F Lu, H Zhou, Y Zhao, B Chen, Y Hu, J Dai, H Sun. Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility. Sci China Life Sci 2018; 61(12): 1554–1565
https://doi.org/10.1007/s11427-017-9272-2 pmid: 29546669
87 X Yang, M Zhang, Y Zhang, W Li, B Yang. Mesenchymal stem cells derived from Wharton jelly of the human umbilical cord ameliorate damage to human endometrial stromal cells. Fertil Steril 2011; 96(4): 1029–1036
https://doi.org/10.1016/j.fertnstert.2011.07.005 pmid: 21802667
88 SA Steigman, A Ahmed, RM Shanti, RS Tuan, C Valim, DO Fauza. Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells. J Pediatr Surg 2009; 44(6): 1120–1126
https://doi.org/10.1016/j.jpedsurg.2009.02.038 pmid: 19524727
89 SM Kunisaki, JR Fuchs, A Kaviani, JT Oh, DA LaVan, JP Vacanti, JM Wilson, DO Fauza. Diaphragmatic repair through fetal tissue engineering: a comparison between mesenchymal amniocyte- and myoblast-based constructs. J Pediatr Surg 2006; 41(1): 34–39
https://doi.org/10.1016/j.jpedsurg.2005.10.011 pmid: 16410104
90 GY Xiao, IH Liu, CC Cheng, CC Chang, YH Lee, WT Cheng, SC Wu. Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy. PLoS One 2014; 9(9): e106538
https://doi.org/10.1371/journal.pone.0106538 pmid: 25198549
91 T Liu, Y Huang, L Guo, W Cheng, G Zou. CD44+/CD105+ human amniotic fluid mesenchymal stem cells survive and proliferate in the ovary long-term in a mouse model of chemotherapy-induced premature ovarian failure. Int J Med Sci 2012; 9(7): 592–602
https://doi.org/10.7150/ijms.4841 pmid: 23028242
92 RH Lee, B Kim, I Choi, H Kim, HS Choi, K Suh, YC Bae, JS Jung. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004; 14(4–6): 311–324
https://doi.org/10.1159/000080341 pmid: 15319535
93 LL Damous, JS Nakamuta, AE Carvalho, KC Carvalho, JM Jr Soares, MJ Simões, JE Krieger, EC Baracat. Does adipose tissue-derived stem cell therapy improve graft quality in freshly grafted ovaries?. Reprod Biol Endocrinol 2015; 13(1): 108
https://doi.org/10.1186/s12958-015-0104-2 pmid: 26394676
94 M Sun, S Wang, Y Li, L Yu, F Gu, C Wang, Y Yao. Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem Cell Res Ther 2013; 4(4): 80
https://doi.org/10.1186/scrt231 pmid: 23838374
95 S Kilic, B Yuksel, F Pinarli, A Albayrak, B Boztok, T Delibasi. Effect of stem cell application on Asherman syndrome, an experimental rat model. J Assist Reprod Genet 2014; 31(8): 975–982
https://doi.org/10.1007/s10815-014-0268-2 pmid: 24974357
96 L Ling, X Feng, T Wei, Y Wang, Y Wang, Z Wang, D Tang, Y Luo, Z Xiong. Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation improves ovarian function in rats with premature ovarian insufficiency (POI) at least partly through a paracrine mechanism. Stem Cell Res Ther 2019; 10(1): 46
https://doi.org/10.1186/s13287-019-1136-x pmid: 30683144
97 X Feng, L Ling, W Zhang, X Liu, Y Wang, Y Luo, Z Xiong. Effects of human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation in situ on primary ovarian insufficiency in SD rats. Reprod Sci 2020; 27(7): 1502–1512
https://doi.org/10.1007/s43032-020-00147-0 pmid: 31953773
98 N Yin, Y Wang, X Lu, R Liu, L Zhang, W Zhao, W Yuan, Q Luo, H Wu, X Luan, H Zhang. hPMSC transplantation restoring ovarian function in premature ovarian failure mice is associated with change of Th17/Tc17 and Th17/Treg cell ratios through the PI3K/Akt signal pathway. Stem Cell Res Ther 2018; 9(1): 37
https://doi.org/10.1186/s13287-018-0772-x pmid: 29444704
99 H Li, W Zhao, L Wang, Q Luo, N Yin, X Lu, Y Hou, J Cui, H Zhang. Human placenta-derived mesenchymal stem cells inhibit apoptosis of granulosa cells induced by IRE1α pathway in autoimmune POF mice. Cell Biol Int 2019; 43(8): 899–909
https://doi.org/10.1002/cbin.11165 pmid: 31081266
100 TH Kim, JH Choi, Y Jun, SM Lim, S Park, JY Paek, SH Lee, JY Hwang, GJ Kim. 3D-cultured human placenta-derived mesenchymal stem cell spheroids enhance ovary function by inducing folliculogenesis. Sci Rep 2018; 8(1): 15313
https://doi.org/10.1038/s41598-018-33575-9 pmid: 30333505
101 HM Qu, LP Qu, XZ Pan, LS Mu. Upregulated miR-222 targets BCL2L11 and promotes apoptosis of mesenchymal stem cells in preeclampsia patients in response to severe hypoxia. Int J Clin Exp Pathol 2018; 11(1): 110–119
pmid: 31938092
102 MD Manshadi, S Navid, Y Hoshino, E Daneshi, P Noory, M Abbasi. The effects of human menstrual blood stem cells-derived granulosa cells on ovarian follicle formation in a rat model of premature ovarian failure. Microsc Res Tech 2019; 82(6): 635–642
https://doi.org/10.1002/jemt.23120 pmid: 30582244
103 A Domnina, P Novikova, J Obidina, I Fridlyanskaya, L Alekseenko, I Kozhukharova, O Lyublinskaya, V Zenin, N Nikolsky. Human mesenchymal stem cells in spheroids improve fertility in model animals with damaged endometrium. Stem Cell Res Ther 2018; 9(1): 50
https://doi.org/10.1186/s13287-018-0801-9 pmid: 29482664
104 SX Zheng, J Wang, XL Wang, A Ali, LM Wu, YS Liu. Feasibility analysis of treating severe intrauterine adhesions by transplanting menstrual blood-derived stem cells. Int J Mol Med 2018; 41(4): 2201–2212
https://doi.org/10.3892/ijmm.2018.3415 pmid: 29393381
105 S Zhang, P Li, Z Yuan, J Tan. Platelet-rich plasma improves therapeutic effects of menstrual blood-derived stromal cells in rat model of intrauterine adhesion. Stem Cell Res Ther 2019; 10(1): 61
https://doi.org/10.1186/s13287-019-1155-7 pmid: 30770774
106 Z Yan, F Guo, Q Yuan, Y Shao, Y Zhang, H Wang, S Hao, X Du. Endometrial mesenchymal stem cells isolated from menstrual blood repaired epirubicin-induced damage to human ovarian granulosa cells by inhibiting the expression of Gadd45b in cell cycle pathway. Stem Cell Res Ther 2019; 10(1): 4
https://doi.org/10.1186/s13287-018-1101-0 pmid: 30606243
107 J Tan, P Li, Q Wang, Y Li, X Li, D Zhao, X Xu, L Kong. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome. Hum Reprod 2016; 31(12): 2723–2729
https://doi.org/10.1093/humrep/dew235 pmid: 27664218
108 M Owen, AJ Friedenstein. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 1988; 136: 42–60
https://doi.org/10.1002/9780470513637.ch4 pmid: 3068016
109 L Gao, Z Huang, H Lin, Y Tian, P Li, S Lin. Bone marrow mesenchymal stem cells (BMSCs) restore functional endometrium in the rat model for severe Asherman syndrome. Reprod Sci 2019; 26(3): 436–444
https://doi.org/10.1177/1933719118799201 pmid: 30458678
110 HE Besikcioglu, GS Sarıbas, C Ozogul, M Tiryaki, S Kilic, FA Pınarlı, O Gulbahar. Determination of the effects of bone marrow derived mesenchymal stem cells and ovarian stromal stem cells on follicular maturation in cyclophosphamide induced ovarian failure in rats. Taiwan J Obstet Gynecol 2019; 58(1): 53–59
https://doi.org/10.1016/j.tjog.2018.11.010 pmid: 30638481
111 PV Guillot, C Gotherstrom, J Chan, H Kurata, NM Fisk. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 2007; 25(3): 646–654
https://doi.org/10.1634/stemcells.2006-0208 pmid: 17124009
112 J Wang, B Ju, C Pan, Y Gu, Y Zhang, L Sun, B Zhang, Y Zhang. Application of bone marrow-derived mesenchymal stem cells in the treatment of intrauterine adhesions in rats. Cell Physiol Biochem 2016; 39(4): 1553–1560
https://doi.org/10.1159/000447857 pmid: 27614987
113 X Santamaria, S Cabanillas, I Cervelló, C Arbona, F Raga, J Ferro, J Palmero, J Remohí, A Pellicer, C Simón. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman’s syndrome and endometrial atrophy: a pilot cohort study. Hum Reprod 2016; 31(5): 1087–1096
https://doi.org/10.1093/humrep/dew042 pmid: 27005892
114 M Cocuzza, C Alvarenga, R Pagani. The epidemiology and etiology of azoospermia. Clinics (São Paulo) 2013; 68(Suppl 1): 15–26
https://doi.org/10.6061/clinics/2013(Sup01)03 pmid: 23503951
115 SC Vij, E Jr Sabanegh, A Agarwal. Biological therapy for non-obstructive azoospermia. Expert Opin Biol Ther 2018; 18(1): 19–23
https://doi.org/10.1080/14712598.2018.1380622 pmid: 28927307
116 M Kanatsu-Shinohara, T Shinohara. Spermatogonial stem cell self-renewal and development. Annu Rev Cell Dev Biol 2013; 29(1): 163–187
https://doi.org/10.1146/annurev-cellbio-101512-122353 pmid: 24099084
117 RL Brinster, JW Zimmermann. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 1994; 91(24): 11298–11302
https://doi.org/10.1073/pnas.91.24.11298 pmid: 7972053
118 K Nayernia, J Nolte, HW Michelmann, JH Lee, K Rathsack, N Drusenheimer, A Dev, G Wulf, IE Ehrmann, DJ Elliott, V Okpanyi, U Zechner, T Haaf, A Meinhardt, W Engel. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 2006; 11(1): 125–132
https://doi.org/10.1016/j.devcel.2006.05.010 pmid: 16824959
119 K Hayashi, H Ohta, K Kurimoto, S Aramaki, M Saitou. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 2011; 146(4): 519–532
https://doi.org/10.1016/j.cell.2011.06.052 pmid: 21820164
120 RS Legro, SA Arslanian, DA Ehrmann, KM Hoeger, MH Murad, R Pasquali, CK; Endocrine Society Welt. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2013; 98(12): 4565–4592
https://doi.org/10.1210/jc.2013-2350 pmid: 24151290
121 R Chugh, D Ashour, N Garcia, H Park, H Takala, N Ismail, J McAllister, A Al-Hendy, A El Andaloussi. Towards cell therapy of polycystic ovary syndrome (PCOS): human mesenchymal stem cells secretome inhibits androgen production by pcos theca cells. Cytotherapy 2019; 21(5): S81
https://doi.org/10.1016/j.jcyt.2019.03.493
122 M Yin, X Wang, G Yao, M Lü, M Liang, Y Sun, F Sun. Transactivation of micrornA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem 2014; 289(26): 18239–18257
https://doi.org/10.1074/jbc.M113.546044 pmid: 24828505
123 BS Verkauf. Incidence, symptoms, and signs of endometriosis in fertile and infertile women. J Fla Med Assoc 1987; 74(9): 671–675
pmid: 2961844
124 Committee of the American Society for Reproductive Medicine Practice. Endometriosis and infertility: a committee opinion. Fertil Steril 2012; 98(3): 591–598
https://doi.org/10.1016/j.fertnstert.2012.05.031 pmid: 22704630
125 ML Macer, HS Taylor. Endometriosis and infertility: a review of the pathogenesis and treatment of endometriosis-associated infertility. Obstet Gynecol Clin North Am 2012; 39(4): 535–549
https://doi.org/10.1016/j.ogc.2012.10.002 pmid: 23182559
126 Y Liu, SP Kodithuwakku, PY Ng, J Chai, EH Ng, WS Yeung, PC Ho, KF Lee. Excessive ovarian stimulation up-regulates the Wnt-signaling molecule DKK1 in human endometrium and may affect implantation: an in vitro co-culture study. Hum Reprod 2010; 25(2): 479–490
https://doi.org/10.1093/humrep/dep429 pmid: 19955106
127 HN Sallam, JA Garcia-Velasco, S Dias, A Arici. Long-term pituitary down-regulation before in vitro fertilization (IVF) for women with endometriosis. Cochrane Database Syst Rev 2006; 2006(1): CD004635
https://doi.org/10.1002/14651858.CD004635.pub2 pmid: 16437491
128 L Benschop, C Farquhar, N van der Poel, MJ Heineman. Interventions for women with endometrioma prior to assisted reproductive technology. Cochrane Database Syst Rev 2010; (11): CD008571
https://doi.org/10.1002/14651858.CD008571.pub2 pmid: 21069706
129 Society for Human Reproduction European, (ESHRE) Guideline Group on POI Embryology, L Webber, M Davies, R Anderson, J Bartlett, D Braat, B Cartwright, R Cifkova, Muinck Keizer-Schrama S de, E Hogervorst, F Janse, L Liao, V Vlaisavljevic, C Zillikens, N Vermeulen. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod 2016; 31(5): 926–937
https://doi.org/10.1093/humrep/dew027 pmid: 27008889
130 K Kawamura, Y Cheng, N Suzuki, M Deguchi, Y Sato, S Takae, CH Ho, N Kawamura, M Tamura, S Hashimoto, Y Sugishita, Y Morimoto, Y Hosoi, N Yoshioka, B Ishizuka, AJ Hsueh. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci USA 2013; 110(43): 17474–17479
https://doi.org/10.1073/pnas.1312830110 pmid: 24082083
131 JG Asherman. Traumatic intra-uterine adhesions. J Obstet Gynaecol Br Emp 1950; 57(6): 892–896
https://doi.org/10.1111/j.1471-0528.1950.tb06053.x pmid: 14804168
132 JG Schenker, EJ Margalioth. Intrauterine adhesions: an updated appraisal. Fertil Steril 1982; 37(5): 593–610
https://doi.org/10.1016/S0015-0282(16)46268-0 pmid: 6281085
133 RF Valle, JJ Sciarra. Intrauterine adhesions: hysteroscopic diagnosis, classification, treatment, and reproductive outcome. Am J Obstet Gynecol 1988; 158(6): 1459–1470
https://doi.org/10.1016/0002-9378(88)90382-1 pmid: 3381869
134 O Sugimoto. Diagnostic and therapeutic hysteroscopy for traumatic intrauterine adhesions. Am J Obstet Gynecol 1978; 131(5): 539–547
https://doi.org/10.1016/0002-9378(78)90116-3 pmid: 677196
135 KA Zikopoulos, EM Kolibianakis, P Platteau, L de Munck, H Tournaye, P Devroey, M Camus. Live delivery rates in subfertile women with Asherman’s syndrome after hysteroscopic adhesiolysis using the resectoscope or the Versapoint system. Reprod Biomed Online 2004; 8(6): 720–725
https://doi.org/10.1016/S1472-6483(10)61654-9 pmid: 15169591
136 F Alawadhi, H Du, H Cakmak, HS Taylor. Bone marrow-derived stem cell (BMDSC) transplantation improves fertility in a murine model of Asherman’s syndrome. PLoS One 2014; 9(5): e96662
https://doi.org/10.1371/journal.pone.0096662 pmid: 24819371
137 L Gan, H Duan, Q Xu, YQ Tang, JJ Li, FQ Sun, S Wang. Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions. Cytotherapy 2017; 19(5): 603–616
https://doi.org/10.1016/j.jcyt.2017.02.003 pmid: 28285950
138 N Singh, S Mohanty, T Seth, M Shankar, S Bhaskaran, S Dharmendra. Autologous stem cell transplantation in refractory Asherman’s syndrome: a novel cell based therapy. J Hum Reprod Sci 2014; 7(2): 93–98
https://doi.org/10.4103/0974-1208.138864 pmid: 25191021
139 FJ Vizoso, N Eiro, S Cid, J Schneider, R Perez-Fernandez. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 2017; 18(9): 1852
https://doi.org/10.3390/ijms18091852 pmid: 28841158
140 DC Ding, WC Shyu, SZ Lin. Mesenchymal stem cells. Cell Transplant 2011; 20(1): 5–14
https://doi.org/10.3727/096368910X pmid: 21396235
141 I Ullah, RB Subbarao, GJ Rho. Human mesenchymal stem cells—current trends and future prospective. Biosci Rep 2015; 35(2): e00191
https://doi.org/10.1042/BSR20150025 pmid: 25797907
142 JB Sneddon, Q Tang, P Stock, JA Bluestone, S Roy, T Desai, M Hebrok. Stem cell therapies for treating diabetes: progress and remaining challenges. Cell Stem Cell 2018; 22(6): 810–823
https://doi.org/10.1016/j.stem.2018.05.016 pmid: 29859172
143 H Du, HS Taylor. Stem cells and female reproduction. Reprod Sci 2009; 16(2): 126–139
https://doi.org/10.1177/1933719108329956 pmid: 19208782
144 F Liu, S Hu, H Yang, Z Li, K Huang, T Su, S Wang, K Cheng. Hyaluronic acid hydrogel integrated with mesenchymal stem cell-secretome to treat endometrial injury in a rat model of Asherman’s syndrome. Adv Healthc Mater 2019; 8(14): e1900411
https://doi.org/10.1002/adhm.201900411 pmid: 31148407
145 M Mendt, K Rezvani, E Shpall. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 2019; 54(Suppl 2): 789–792
https://doi.org/10.1038/s41409-019-0616-z pmid: 31431712
146 M Ullah, Y Qiao, W Concepcion, AS Thakor. Stem cell-derived extracellular vesicles: role in oncogenic processes, bioengineering potential, and technical challenges. Stem Cell Res Ther 2019; 10(1): 347
https://doi.org/10.1186/s13287-019-1468-6 pmid: 31771657
147 C Théry, KW Witwer, E Aikawa, MJ Alcaraz, JD Anderson, R Andriantsitohaina, A Antoniou, T Arab, F Archer, GK Atkin-Smith, DC Ayre, JM Bach, D Bachurski, H Baharvand, L Balaj, S Baldacchino, NN Bauer, AA Baxter, M Bebawy, C Beckham, A Bedina Zavec, A Benmoussa, AC Berardi, P Bergese, E Bielska, C Blenkiron, S Bobis-Wozowicz, E Boilard, W Boireau, A Bongiovanni, FE Borràs, S Bosch, CM Boulanger, X Breakefield, AM Breglio, MÁ Brennan, DR Brigstock, A Brisson, ML Broekman, JF Bromberg, P Bryl-Górecka, S Buch, AH Buck, D Burger, S Busatto, D Buschmann, B Bussolati, EI Buzás, JB Byrd, G Camussi, DR Carter, S Caruso, LW Chamley, YT Chang, C Chen, S Chen, L Cheng, AR Chin, A Clayton, SP Clerici, A Cocks, E Cocucci, RJ Coffey, A Cordeiro-da-Silva, Y Couch, FA Coumans, B Coyle, R Crescitelli, MF Criado, C D’Souza-Schorey, S Das, A Datta Chaudhuri, P de Candia, EF De Santana, O De Wever, HA Del Portillo, T Demaret, S Deville, A Devitt, B Dhondt, D Di Vizio, LC Dieterich, V Dolo, AP Dominguez Rubio, M Dominici, MR Dourado, TA Driedonks, FV Duarte, HM Duncan, RM Eichenberger, K Ekström, S El Andaloussi, C Elie-Caille, U Erdbrügger, JM Falcón-Pérez, F Fatima, JE Fish, M Flores-Bellver, A Försönits, A Frelet-Barrand, F Fricke, G Fuhrmann, S Gabrielsson, A Gámez-Valero, C Gardiner, K Gärtner, R Gaudin, YS Gho, B Giebel, C Gilbert, M Gimona, I Giusti, DC Goberdhan, A Görgens, SM Gorski, DW Greening, JC Gross, A Gualerzi, GN Gupta, D Gustafson, A Handberg, RA Haraszti, P Harrison, H Hegyesi, A Hendrix, AF Hill, FH Hochberg, KF Hoffmann, B Holder, H Holthofer, B Hosseinkhani, G Hu, Y Huang, V Huber, S Hunt, AG Ibrahim, T Ikezu, JM Inal, M Isin, A Ivanova, HK Jackson, S Jacobsen, SM Jay, M Jayachandran, G Jenster, L Jiang, SM Johnson, JC Jones, A Jong, T Jovanovic-Talisman, S Jung, R Kalluri, SI Kano, S Kaur, Y Kawamura, ET Keller, D Khamari, E Khomyakova, A Khvorova, P Kierulf, KP Kim, T Kislinger, M Klingeborn, 2nd Klinke DJ, M Kornek, MM Kosanović,ÁF Kovács, EM Krämer-Albers, S Krasemann, M Krause, IV Kurochkin, GD Kusuma, S Kuypers, S Laitinen, SM Langevin, LR Languino, J Lannigan, C Lässer, LC Laurent, G Lavieu, E Lázaro-Ibáñez, S Le Lay, MS Lee, YXF Lee, DS Lemos, M Lenassi, A Leszczynska, IT Li, K Liao, SF Libregts, E Ligeti, R Lim, SK Lim, A Linē, K Linnemannstöns, A Llorente, CA Lombard, MJ Lorenowicz,ÁM Lörincz, J Lötvall, J Lovett, MC Lowry, X Loyer, Q Lu, B Lukomska, TR Lunavat, SL Maas, H Malhi, A Marcilla, J Mariani, J Mariscal, ES Martens-Uzunova, L Martin-Jaular, MC Martinez, VR Martins, M Mathieu, S Mathivanan, M Maugeri, LK McGinnis, MJ McVey, Jr Meckes DG, KL Meehan, I Mertens, VR Minciacchi, A Möller, M Møller Jørgensen, A Morales-Kastresana, J Morhayim, F Mullier, M Muraca, L Musante, V Mussack, DC Muth, KH Myburgh, T Najrana, M Nawaz, I Nazarenko, P Nejsum, C Neri, T Neri, R Nieuwland, L Nimrichter, JP Nolan, EN Nolte-’t Hoen, N Noren Hooten, L O’Driscoll, T O’Grady, A O’Loghlen, T Ochiya, M Olivier, A Ortiz, LA Ortiz, X Osteikoetxea, O Østergaard, M Ostrowski, J Park, DM Pegtel, H Peinado, F Perut, MW Pfaffl, DG Phinney, BC Pieters, RC Pink, DS Pisetsky, E Pogge von Strandmann, I Polakovicova, IK Poon, BH Powell, I Prada, L Pulliam, P Quesenberry, A Radeghieri, RL Raffai, S Raimondo, J Rak, MI Ramirez, G Raposo, MS Rayyan, N Regev-Rudzki, FL Ricklefs, PD Robbins, DD Roberts, SC Rodrigues, E Rohde, S Rome, KM Rouschop, A Rughetti, AE Russell, P Saá, S Sahoo, E Salas-Huenuleo, C Sánchez, JA Saugstad, MJ Saul, RM Schiffelers, R Schneider, TH Schøyen, A Scott, E Shahaj, S Sharma, O Shatnyeva, F Shekari, GV Shelke, AK Shetty, K Shiba, PR Siljander, AM Silva, A Skowronek, 2nd Snyder OL, RP Soares, BW Sódar, C Soekmadji, J Sotillo, PD Stahl, W Stoorvogel, SL Stott, EF Strasser, S Swift, H Tahara, M Tewari, K Timms, S Tiwari, R Tixeira, M Tkach, WS Toh, R Tomasini, AC Torrecilhas, JP Tosar, V Toxavidis, L Urbanelli, P Vader, BW van Balkom, SG van der Grein, J Van Deun, MJ van Herwijnen, K Van Keuren-Jensen, G van Niel, ME van Royen, AJ van Wijnen, MH Vasconcelos, Jr Vechetti IJ, TD Veit, LJ Vella,É Velot, FJ Verweij, B Vestad, JL Viñas, T Visnovitz, KV Vukman, J Wahlgren, DC Watson, MH Wauben, A Weaver, JP Webber, V Weber, AM Wehman, DJ Weiss, JA Welsh, S Wendt, AM Wheelock, Z Wiener, L Witte, J Wolfram, A Xagorari, P Xander, J Xu, X Yan, M Yáñez-Mó, H Yin, Y Yuana, V Zappulli, J Zarubova, V Žėkas, JY Zhang, Z Zhao, L Zheng, AR Zheutlin, AM Zickler, P Zimmermann, AM Zivkovic, D Zocco, EK Zuba-Surma. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1): 1535750
https://doi.org/10.1080/20013078.2018.1535750 pmid: 30637094
148 AG Zhao, K Shah, B Cromer, H Sumer. Mesenchymal stem cell-derived extracellular vesicles and their therapeutic potential. Stem Cells Int 2020; 2020: 8825771
https://doi.org/10.1155/2020/8825771 pmid: 32908543
149 Y Yu, X Lin, Q Wang, M He, Y Chau. Long-term therapeutic effect in nonhuman primate eye from a single injection of anti-VEGF controlled release hydrogel. Bioeng Transl Med 2019; 4(2): e10128
https://doi.org/10.1002/btm2.10128 pmid: 31249878
150 S Kourembanas. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol 2015; 77(1): 13–27
https://doi.org/10.1146/annurev-physiol-021014-071641 pmid: 25293529
151 G Qiu, G Zheng, M Ge, J Wang, R Huang, Q Shu, J Xu. Functional proteins of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2019; 10(1): 359
https://doi.org/10.1186/s13287-019-1484-6 pmid: 31779700
152 G Raposo, W Stoorvogel. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373–383
https://doi.org/10.1083/jcb.201211138 pmid: 23420871
153 HS Joo, JH Suh, HJ Lee, ES Bang, JM Lee. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent. Int J Mol Sci 2020; 21(3): 727
https://doi.org/10.3390/ijms21030727 pmid: 31979113
154 H Abbaszadeh, F Ghorbani, M Derakhshani, A Movassaghpour, M Yousefi. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: a novel therapeutic paradigm. J Cell Physiol 2020; 235(2): 706–717
https://doi.org/10.1002/jcp.29004 pmid: 31254289
155 DG Phinney, M Di Giuseppe, J Njah, E Sala, S Shiva, CM St Croix, DB Stolz, SC Watkins, YP Di, GD Leikauf, J Kolls, DW Riches, G Deiuliis, N Kaminski, SV Boregowda, DH McKenna, LA Ortiz. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 2015; 6(1): 8472
https://doi.org/10.1038/ncomms9472 pmid: 26442449
156 N Domniz, D Meirow. Premature ovarian insufficiency and autoimmune diseases. Best Pract Res Clin Obstet Gynaecol 2019; 60: 42–55
https://doi.org/10.1016/j.bpobgyn.2019.07.008 pmid: 31495598
157 M De Vos, P Devroey, BC Fauser. Primary ovarian insufficiency. Lancet 2010; 376(9744): 911–921
https://doi.org/10.1016/S0140-6736(10)60355-8 pmid: 20708256
158 B Huang, C Qian, C Ding, Q Meng, Q Zou, H Li. Fetal liver mesenchymal stem cells restore ovarian function in premature ovarian insufficiency by targeting MT1. Stem Cell Res Ther 2019; 10(1): 362
https://doi.org/10.1186/s13287-019-1490-8 pmid: 31783916
159 EH Kim, BH Jeon, J Kim, YM Kim, Y Han, K Ahn, HK Cheong. Exposure to phthalates and bisphenol A are associated with atopic dermatitis symptoms in children: a time-series analysis. Environ Health 2017; 16(1): 24
https://doi.org/10.1186/s12940-017-0225-5 pmid: 28274229
160 EA Ford, EL Beckett, SD Roman, EA McLaughlin, JM Sutherland. Advances in human primordial follicle activation and premature ovarian insufficiency. Reproduction 2020; 159(1): R15–R29
https://doi.org/10.1530/REP-19-0201 pmid: 31376814
161 I Huhtaniemi, O Hovatta, A La Marca, G Livera, D Monniaux, L Persani, A Heddar, K Jarzabek, T Laisk-Podar, A Salumets, JS Tapanainen, RA Veitia, JA Visser, P Wieacker, S Wolczynski, M Misrahi. Advances in the molecular pathophysiology, genetics, and treatment of primary ovarian insufficiency. Trends Endocrinol Metab 2018; 29(6): 400–419
https://doi.org/10.1016/j.tem.2018.03.010 pmid: 29706485
162 V Wesevich, AN Kellen, L Pal. Recent advances in understanding primary ovarian insufficiency. F1000 Res 2020; 9: F1000 Faculty Rev-1101
https://doi.org/10.12688/f1000research.26423.1 pmid: 32934798
163 S Caburet, VA Arboleda, E Llano, PA Overbeek, JL Barbero, K Oka, W Harrison, D Vaiman, Z Ben-Neriah, I García-Tuñón, M Fellous, AM Pendás, RA Veitia, E Vilain. Mutant cohesin in premature ovarian failure. N Engl J Med 2014; 370(10): 943–949
https://doi.org/10.1056/NEJMoa1309635 pmid: 24597867
164 J Bouilly, I Beau, S Barraud, V Bernard, K Azibi, J Fagart, A Fèvre, AL Todeschini, RA Veitia, C Beldjord, B Delemer, C Dodé, J Young, N Binart. Identification of multiple gene mutations accounts for a new genetic architecture of primary ovarian insufficiency. J Clin Endocrinol Metab 2016; 101(12): 4541–4550
https://doi.org/10.1210/jc.2016-2152 pmid: 27603904
165 S Jaillard, K Bell, L Akloul, K Walton, K McElreavy, WA Stocker, M Beaumont, C Harrisson, T Jääskeläinen, JJ Palvimo, G Robevska, E Launay, AP Satié, N Listyasari, C Bendavid, R Sreenivasan, S Duros, den Bergen J van, C Henry, M Domin-Bernhard, L Cornevin, N Dejucq-Rainsford, MA Belaud-Rotureau, S Odent, KL Ayers, C Ravel, EJ Tucker, AH Sinclair. New insights into the genetic basis of premature ovarian insufficiency: novel causative variants and candidate genes revealed by genomic sequencing. Maturitas 2020; 141: 9–19
https://doi.org/10.1016/j.maturitas.2020.06.004 pmid: 33036707
166 T Liu, Y Liu, Y Huang, J Chen, Z Yu, C Chen, L Lai. miR-15b induces premature ovarian failure in mice via inhibition of α-Klotho expression in ovarian granulosa cells. Free Radic Biol Med 2019; 141: 383–392
https://doi.org/10.1016/j.freeradbiomed.2019.07.010 pmid: 31310795
167 L Persani, R Rossetti, C Cacciatore, S Fabre. Genetic defects of ovarian TGF-β-like factors and premature ovarian failure. J Endocrinol Invest 2011; 34(3): 244–251
https://doi.org/10.1007/BF03347073 pmid: 21297384
168 J Grosbois, I Demeestere. Dynamics of PI3K and Hippo signaling pathways during in vitro human follicle activation. Hum Reprod 2018; 33(9): 1705–1714
https://doi.org/10.1093/humrep/dey250 pmid: 30032281
169 S Dragojević-Dikić, D Marisavljević, A Mitrović, S Dikić, T Jovanović, S Janković-Raznatović. An immunological insight into premature ovarian failure (POF). Autoimmun Rev 2010; 9(11): 771–774
https://doi.org/10.1016/j.autrev.2010.06.008 pmid: 20601203
170 CB Coulam, JJ Stern. Immunology of ovarian failure. Am J Reprod Immunol 1991; 25(4): 169–174
https://doi.org/10.1111/j.1600-0897.1991.tb01089.x pmid: 1786086
171 M Shen, Y Jiang, Z Guan, Y Cao, L Li, H Liu, SC Sun. Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy. Autophagy 2017; 13(8): 1364–1385
https://doi.org/10.1080/15548627.2017.1327941 pmid: 28598230
172 B Huang, J Lu, C Ding, Q Zou, W Wang, H Li. Exosomes derived from human adipose mesenchymal stem cells improve ovary function of premature ovarian insufficiency by targeting SMAD. Stem Cell Res Ther 2018; 9(1): 216
https://doi.org/10.1186/s13287-018-0953-7 pmid: 30092819
173 J Zhang, H Yin, H Jiang, X Du, Z Yang. The protective effects of human umbilical cord mesenchymal stem cell-derived extracellular vesicles on cisplatin-damaged granulosa cells. Taiwan J Obstet Gynecol 2020; 59(4): 527–533
https://doi.org/10.1016/j.tjog.2020.05.010 pmid: 32653124
174 Z Yang, X Du, C Wang, J Zhang, C Liu, Y Li, H Jiang. Therapeutic effects of human umbilical cord mesenchymal stem cell-derived microvesicles on premature ovarian insufficiency in mice. Stem Cell Res Ther 2019; 10(1): 250
https://doi.org/10.1186/s13287-019-1327-5 pmid: 31412919
175 S Zhang, B Huang, P Su, Q Chang, P Li, A Song, X Zhao, Z Yuan, J Tan. Concentrated exosomes from menstrual blood-derived stromal cells improves ovarian activity in a rat model of premature ovarian insufficiency. Stem Cell Res Ther 2021; 12(1): 178
https://doi.org/10.1186/s13287-021-02255-3 pmid: 33712079
176 GY Xiao, CC Cheng, YS Chiang, WT Cheng, IH Liu, SC Wu. Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy. Sci Rep 2016; 6(1): 23120
https://doi.org/10.1038/srep23120 pmid: 26979400
177 L Sun, D Li, K Song, J Wei, S Yao, Z Li, X Su, X Ju, L Chao, X Deng, B Kong, L Li. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro. Sci Rep 2017; 7(1): 2552
https://doi.org/10.1038/s41598-017-02786-x pmid: 28566720
178 W Boecker, Horn L van, G Stenman, C Stürken, U Schumacher, T Loening, L Liesenfeld, E Korsching, D Gläser, K Tiemann, I Buchwalow. Spatially correlated phenotyping reveals K5-positive luminal progenitor cells and p63-K5/14-positive stem cell-like cells in human breast epithelium. Lab Invest 2018; 98(8): 1065–1075
https://doi.org/10.1038/s41374-018-0054-3 pmid: 29743728
179 E Thabet, A Yusuf, DA Abdelmonsif, I Nabil, G Mourad, RA Mehanna. Extracellular vesicles miRNA-21: a potential therapeutic tool in premature ovarian dysfunction. Mol Hum Reprod 2020; 26(12): 906–919
https://doi.org/10.1093/molehr/gaaa068 pmid: 33049041
180 B Sun, Y Ma, F Wang, L Hu, Y Sun. miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis. Stem Cell Res Ther 2019; 10(1): 360
https://doi.org/10.1186/s13287-019-1442-3 pmid: 31783913
181 C Ding, C Qian, S Hou, J Lu, Q Zou, H Li, B Huang. Exosomal miRNA-320a is released from hAMSCs and regulates SIRT4 to prevent reactive oxygen species generation in POI. Mol Ther Nucleic Acids 2020; 21: 37–50
https://doi.org/10.1016/j.omtn.2020.05.013 pmid: 32506013
182 C Liu, H Yin, H Jiang, X Du, C Wang, Y Liu, Y Li, Z Yang. Extracellular vesicles derived from mesenchymal stem cells recover fertility of premature ovarian insufficiency mice and the effects on their offspring. Cell Transplant 2020; 29: 963689720923575
https://doi.org/10.1177/0963689720923575 pmid: 32363925
183 RJ Norman, R Wu, MT Stankiewicz. 4: Polycystic ovary syndrome. Med J Aust 2004; 180(3): 132–137
https://doi.org/10.5694/j.1326-5377.2004.tb05838.x pmid: 14748678
184 R Blázquez, FM Sánchez-Margallo, V Álvarez, E Matilla, N Hernández, F Marinaro, M Gómez-Serrano, I Jorge, JG Casado, B Macías-García. Murine embryos exposed to human endometrial MSCs-derived extracellular vesicles exhibit higher VEGF/PDGF AA release, increased blastomere count and hatching rates. PLoS One 2018; 13(4): e0196080
https://doi.org/10.1371/journal.pone.0196080 pmid: 29684038
185 F Marinaro, B Macías-García, FM Sánchez-Margallo, R Blázquez, V Álvarez, E Matilla, N Hernández, M Gómez-Serrano, I Jorge, J Vázquez, L González-Fernández, E Pericuesta, A Gutiérrez-Adán, JG Casado. Extracellular vesicles derived from endometrial human mesenchymal stem cells enhance embryo yield and quality in an aged murine model. Biol Reprod 2019; 100(5): 1180–1192
https://doi.org/10.1093/biolre/ioy263 pmid: 30596891
186 Lancet Diabetes Endocrinology The. Empowering women with PCOS. Lancet Diabetes Endocrinol 2019; 7(10): 737
https://doi.org/10.1016/S2213-8587(19)30289-X pmid: 31501041
187 HF Escobar-Morreale. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol 2018; 14(5): 270–284
https://doi.org/10.1038/nrendo.2018.24 pmid: 29569621
188 X Liang, L Zhang, S Wang, Q Han, RC Zhao. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci 2016; 129(11): 2182–2189
https://doi.org/10.1242/jcs.170373 pmid: 27252357
189 AH Balen, LC Morley, M Misso, S Franks, RS Legro, CN Wijeyaratne, E Stener-Victorin, BC Fauser, RJ Norman, H Teede. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum Reprod Update 2016; 22(6): 687–708
https://doi.org/10.1093/humupd/dmw025 pmid: 27511809
190 A Madkour, N Bouamoud, I Kaarouch, N Louanjli, B Saadani, S Assou, S Aboulmaouahib, O Sefrioui, S Amzazi, H Copin, M Benkhalifa. Follicular fluid and supernatant from cultured cumulus-granulosa cells improve in vitro maturation in patients with polycystic ovarian syndrome. Fertil Steril 2018; 110(4): 710–719
https://doi.org/10.1016/j.fertnstert.2018.04.038 pmid: 30196968
191 Y Zhao, M Tao, M Wei, S Du, H Wang, X Wang. Mesenchymal stem cells derived exosomal miR-323-3p promotes proliferation and inhibits apoptosis of cumulus cells in polycystic ovary syndrome (PCOS). Artif Cells Nanomed Biotechnol 2019; 47(1): 3804–3813
https://doi.org/10.1080/21691401.2019.1669619 pmid: 31549864
192 CA Salazar, K Isaacson, S Morris. A comprehensive review of Asherman’s syndrome: causes, symptoms and treatment options. Curr Opin Obstet Gynecol 2017; 29(4): 249–256
https://doi.org/10.1097/GCO.0000000000000378 pmid: 28582327
193 CM March. Asherman’s syndrome. Semin Reprod Med 2011; 29(2): 83–94
https://doi.org/10.1055/s-0031-1272470 pmid: 21437822
194 ST Lo, P Ramsay, R Pierson, F Manconi, MG Munro, IS Fraser. Endometrial thickness measured by ultrasound scan in women with uterine outlet obstruction due to intrauterine or upper cervical adhesions. Hum Reprod 2008; 23(2): 306–309
https://doi.org/10.1093/humrep/dem393 pmid: 18083747
195 S Xiao, Y Wan, M Xue, X Zeng, F Xiao, D Xu, X Yang, P Zhang, W Sheng, J Xu, S Zhou. Etiology, treatment, and reproductive prognosis of women with moderate-to-severe intrauterine adhesions. Int J Gynaecol Obstet 2014; 125(2): 121–124
https://doi.org/10.1016/j.ijgo.2013.10.026 pmid: 24598346
196 X Bai, J Liu, S Cao, L Wang. Mechanisms of endometrial fibrosis and the potential application of stem cell therapy. Discov Med 2019; 27(150): 267–279
pmid: 31421695
197 X Santamaria, K Isaacson, C Simón. Asherman’s syndrome: it may not be all our fault. Hum Reprod 2018; 33(8): 1374–1380
https://doi.org/10.1093/humrep/dey232 pmid: 31986212
198 U Salma, M Xue, MS Ali Sheikh, X Guan, B Xu, A Zhang, L Huang, D Xu. Role of transforming growth factor-β1 and Smads signaling pathway in intrauterine adhesion. Mediators Inflamm 2016; 2016: 4158287
https://doi.org/10.1155/2016/4158287 pmid: 26997760
199 X Wang, N Ma, Q Sun, C Huang, Y Liu, X Luo. Elevated NF-κB signaling in Asherman syndrome patients and animal models. Oncotarget 2017; 8(9): 15399–15406
https://doi.org/10.18632/oncotarget.14853 pmid: 28148903
200 X Xue, Q Chen, G Zhao, JY Zhao, Z Duan, PS Zheng. The overexpression of TGF-β and CCN2 in intrauterine adhesions involves the NF-κB signaling pathway. PLoS One 2015; 10(12): e0146159
https://doi.org/10.1371/journal.pone.0146159 pmid: 26719893
201 HY Zhu, TX Ge, YB Pan, SY Zhang. Advanced role of hippo signaling in endometrial fibrosis: implications for intrauterine adhesion. Chin Med J (Engl) 2017; 130(22): 2732–2737
https://doi.org/10.4103/0366-6999.218013 pmid: 29133764
202 A Akhmetshina, K Palumbo, C Dees, C Bergmann, P Venalis, P Zerr, A Horn, T Kireva, C Beyer, J Zwerina, H Schneider, A Sadowski, MO Riener, OA MacDougald, O Distler, G Schett, JH Distler. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 2012; 3(1): 735
https://doi.org/10.1038/ncomms1734 pmid: 22415826
203 L Liu, G Chen, T Chen, W Shi, H Hu, K Song, R Huang, H Cai, Y He. si-SNHG5-FOXF2 inhibits TGF-β1-induced fibrosis in human primary endometrial stromal cells by the Wnt/β-catenin signalling pathway. Stem Cell Res Ther 2020; 11(1): 1–17
https://doi.org/10.1186/s13287-020-01990-3 pmid: 31900237
204 G Chen, L Liu, J Sun, L Zeng, H Cai, Y He. Foxf2 and Smad6 co-regulation of collagen 5A2 transcription is involved in the pathogenesis of intrauterine adhesion. J Cell Mol Med 2020; 24(5): 2802–2818
https://doi.org/10.1111/jcmm.14708 pmid: 32022446
205 RKK Leung, Y Lin, Y Liu. Recent advances in understandings towards pathogenesis and treatment for intrauterine adhesion and disruptive insights from single-cell analysis. Reprod Sci 2021; 28(7): 1812–1826
https://doi.org/10.1007/s43032-020-00343-y pmid: 33125685
206 M Liu, D Zhao, X Wu, S Guo, L Yan, S Zhao, H Li, Y Wang, F Rong. miR-466 and NUS1 regulate the AKT/nuclear factor kappa B (NFκB) signaling pathway in intrauterine adhesions in a rat model. Med Sci Monit 2019; 25: 4094–4103
https://doi.org/10.12659/MSM.914202 pmid: 31154456
207 Q Xu, H Duan, L Gan, X Liu, F Chen, X Shen, YQ Tang, S Wang. MicroRNA-1291 promotes endometrial fibrosis by regulating the ArhGAP29-RhoA/ROCK1 signaling pathway in a murine model. Mol Med Rep 2017; 16(4): 4501–4510
https://doi.org/10.3892/mmr.2017.7210 pmid: 28849001
208 H Zhu, Y Pan, Y Jiang, J Li, Y Zhang, S Zhang. Activation of the Hippo/TAZ pathway is required for menstrual stem cells to suppress myofibroblast and inhibit transforming growth factor β signaling in human endometrial stromal cells. Hum Reprod 2019; 34(4): 635–645
https://doi.org/10.1093/humrep/dez001 pmid: 30715393
209 S Zhao, W Qi, J Zheng, Y Tian, X Qi, D Kong, J Zhang, X Huang. Exosomes derived from adipose mesenchymal stem cells restore functional endometrium in a rat model of intrauterine adhesions. Reprod Sci 2020; 27(6): 1266–1275
https://doi.org/10.1007/s43032-019-00112-6 pmid: 31933162
210 L Xin, X Lin, F Zhou, C Li, X Wang, H Yu, Y Pan, H Fei, L Ma, S Zhang. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation. Acta Biomater 2020; 113: 252–266
https://doi.org/10.1016/j.actbio.2020.06.029 pmid: 32574858
211 C Perrini, MG Strillacci, A Bagnato, P Esposti, MG Marini, B Corradetti, D Bizzaro, A Idda, S Ledda, E Capra, F Pizzi, A Lange-Consiglio, F Cremonesi. Microvesicles secreted from equine amniotic-derived cells and their potential role in reducing inflammation in endometrial cells in an in-vitro model. Stem Cell Res Ther 2016; 7(1): 169
https://doi.org/10.1186/s13287-016-0429-6 pmid: 27863532
212 Y Yao, R Chen, G Wang, Y Zhang, F Liu. Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium. Stem Cell Res Ther 2019; 10(1): 225
https://doi.org/10.1186/s13287-019-1332-8 pmid: 31358049
213 GS Saribas, C Ozogul, M Tiryaki, F Alpaslan Pinarli, S Hamdemir Kilic. Effects of uterus derived mesenchymal stem cells and their exosomes on Asherman’s syndrome. Acta Histochem 2020; 122(1): 151465
https://doi.org/10.1016/j.acthis.2019.151465 pmid: 31776004
214 Y Chang, Y Liu, X Li. Exosomes derived from human umbilical cord mesenchymal stem cells promote proliferation of endometrial stromal cell. Fertil Steril 2020; 114(3): e530
https://doi.org/10.1016/j.fertnstert.2020.09.035
215 OS Aworunse, O Adeniji, OL Oyesola, I Isewon, J Oyelade, OO Obembe. Genomic interventions in medicine. Bioinform Biol Insights 2018; 12: 1177932218816100
https://doi.org/10.1177/1177932218816100 pmid: 30546257
216 LH Goetz, NJ Schork. Personalized medicine: motivation, challenges, and progress. Fertil Steril 2018; 109(6): 952–963
https://doi.org/10.1016/j.fertnstert.2018.05.006 pmid: 29935653
217 PY Zhang, Y Yu. Precise personalized medicine in gynecology cancer and infertility. Front Cell Dev Biol 2020; 7: 382
https://doi.org/10.3389/fcell.2019.00382 pmid: 32010694
218 A Ferlin, B Arredi, C Foresta. Genetic causes of male infertility. Reprod Toxicol 2006; 22(2): 133–141
https://doi.org/10.1016/j.reprotox.2006.04.016 pmid: 16806807
219 A Bracke, K Peeters, U Punjabi, D Hoogewijs, S Dewilde. A search for molecular mechanisms underlying male idiopathic infertility. Reprod Biomed Online 2018; 36(3): 327–339
https://doi.org/10.1016/j.rbmo.2017.12.005 pmid: 29336995
220 E Ventimiglia, F Montorsi, A Salonia. Comorbidities and male infertility: a worrisome picture. Curr Opin Urol 2016; 26(2): 146–151
https://doi.org/10.1097/MOU.0000000000000259 pmid: 26765042
221 A Jungwirth, A Giwercman, H Tournaye, T Diemer, Z Kopa, G Dohle, C; European Association of Urology Working Group on Male Infertility Krausz. European Association of Urology guidelines on Male Infertility: the 2012 update. Eur Urol 2012; 62(2): 324–332
https://doi.org/10.1016/j.eururo.2012.04.048 pmid: 22591628
222 MS Oud, L Volozonoka, RM Smits, LELM Vissers, L Ramos, JA Veltman. A systematic review and standardized clinical validity assessment of male infertility genes. Hum Reprod 2019; 34(5): 932–941
https://doi.org/10.1093/humrep/dez022 pmid: 30865283
223 C Krausz, AR Escamilla, C Chianese. Genetics of male infertility: from research to clinic. Reproduction 2015; 150(5): R159–R174
https://doi.org/10.1530/REP-15-0261 pmid: 26447148
224 F Cariati, V D’Argenio, R Tomaiuolo. The evolving role of genetic tests in reproductive medicine. J Transl Med 2019; 17(1): 267
https://doi.org/10.1186/s12967-019-2019-8 pmid: 31412890
225 C Krausz, S Degl’Innocenti. Y chromosome and male infertility: update, 2006. Front Biosci 2006; 11(1): 3049–3061
https://doi.org/10.2741/2032 pmid: 16720375
226 IW Kim, AC Khadilkar, EY Ko, ES Jr Sabanegh. 47, XYY syndrome and male infertility. Rev Urol 2013; 15(4): 188–196
pmid: 24659916
227 C Krausz, L Hoefsloot, M Simoni, F; European Academy of Andrology; European Molecular Genetics Quality Network Tüttelmann. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology 2014; 2(1): 5–19
https://doi.org/10.1111/j.2047-2927.2013.00173.x pmid: 24357628
228 L Stuppia, V Gatta, G Calabrese, P Guanciali Franchi, E Morizio, C Bombieri, R Mingarelli, V Sforza, G Frajese, R Tenaglia, G Palka. A quarter of men with idiopathic oligo-azoospermia display chromosomal abnormalities and microdeletions of different types in interval 6 of Yq11. Hum Genet 1998; 102(5): 566–570
https://doi.org/10.1007/s004390050741 pmid: 9654206
229 PC Patsalis, C Sismani, L Quintana-Murci, F Taleb-Bekkouche, C Krausz, K McElreavey. Effects of transmission of Y chromosome AZFc deletions. Lancet 2002; 360(9341): 1222–1224
https://doi.org/10.1016/S0140-6736(02)11248-7 pmid: 12401251
230 P Asero, AE Calogero, RA Condorelli, L Mongioi’, E Vicari, F Lanzafame, R Crisci, Vignera S La. Relevance of genetic investigation in male infertility. J Endocrinol Invest 2014; 37(5): 415–427
https://doi.org/10.1007/s40618-014-0053-1 pmid: 24458834
231 T Kuroda-Kawaguchi, H Skaletsky, LG Brown, PJ Minx, HS Cordum, RH Waterston, RK Wilson, S Silber, R Oates, S Rozen, DC Page. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet 2001; 29(3): 279–286
https://doi.org/10.1038/ng757 pmid: 11687796
232 A Ferlin, A Garolla, C Foresta. Chromosome abnormalities in sperm of individuals with constitutional sex chromosomal abnormalities. Cytogenet Genome Res 2005; 111(3–4): 310–316
https://doi.org/10.1159/000086905 pmid: 16192710
233 N Schultz, FK Hamra, DL Garbers. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA 2003; 100(21): 12201–12206
https://doi.org/10.1073/pnas.1635054100 pmid: 14526100
234 E Mastantuoni, G Saccone, HB Al-Kouatly, M Paternoster, P D’Alessandro, B Arduino, L Carbone, G Esposito, A Raffone, Vivo V De, GM Maruotti, V Berghella, F Zullo. Expanded carrier screening: a current perspective. Eur J Obstet Gynecol Reprod Biol 2018; 230: 41–54
https://doi.org/10.1016/j.ejogrb.2018.09.014 pmid: 30240948
235 SJ Morin, J Eccles, A Iturriaga, RS Zimmerman. Translocations, inversions and other chromosome rearrangements. Fertil Steril 2017; 107(1): 19–26
https://doi.org/10.1016/j.fertnstert.2016.10.013 pmid: 27793378
236 LJ Folsom, JS Fuqua. Reproductive issues in women with turner syndrome. Endocrinol Metab Clin North Am 2015; 44(4): 723–737
https://doi.org/10.1016/j.ecl.2015.07.004 pmid: 26568488
237 K Oktay, G Bedoschi, K Berkowitz, R Bronson, B Kashani, P McGovern, L Pal, G Quinn, K Rubin. Fertility preservation in women with Turner syndrome: a comprehensive review and practical guidelines. J Pediatr Adolesc Gynecol 2016; 29(5): 409–416
https://doi.org/10.1016/j.jpag.2015.10.011 pmid: 26485320
238 M Chen, S Wei, J Hu, S Quan. Can comprehensive chromosome screening technology improve IVF/ICSI outcomes? A meta-analysis.. PLoS One 2015; 10(10): e0140779
https://doi.org/10.1371/journal.pone.0140779 pmid: 26470028
239 L Man, J Lekovich, Z Rosenwaks, J Gerhardt. Fragile X-associated diminished ovarian reserve and primary ovarian insufficiency from molecular mechanisms to clinical manifestations. Front Mol Neurosci 2017; 10: 290
https://doi.org/10.3389/fnmol.2017.00290 pmid: 28955201
240 LR Hoyos, M Thakur. Fragile X premutation in women: recognizing the health challenges beyond primary ovarian insufficiency. J Assist Reprod Genet 2017; 34(3): 315–323
https://doi.org/10.1007/s10815-016-0854-6 pmid: 27995424
241 R Rossetti, I Ferrari, M Bonomi, L Persani. Genetics of primary ovarian insufficiency. Clin Genet 2017; 91(2): 183–198
https://doi.org/10.1111/cge.12921 pmid: 27861765
242 A Stavljenić-Rukavina. 1. Prenatal diagnosis of chromosomal disorders—molecular aspects. EJIFCC 2008; 19(1): 2–6
pmid: 27683284
243 RL Bennett. The family medical history as a tool in preconception consultation. J Community Genet 2012; 3(3): 175–183
https://doi.org/10.1007/s12687-012-0107-z pmid: 22810887
244 IB Mathijssen, KCA Holtkamp, CPE Ottenheim, JMC van Eeten-Nijman, P Lakeman, H Meijers-Heijboer, MC van Maarle, L Henneman. Preconception carrier screening for multiple disorders: evaluation of a screening offer in a Dutch founder population. Eur J Hum Genet 2018; 26(2): 166–175
https://doi.org/10.1038/s41431-017-0056-4 pmid: 29321671
245 E Dorney, KI Black. Preconception care. Aust J Gen Pract 2018; 47(7): 424–429
https://doi.org/10.31128/AJGP-02-18-4485 pmid: 30114868
246 A Elce, A Boccia, G Cardillo, S Giordano, R Tomaiuolo, G Paolella, G Castaldo. Three novel CFTR polymorphic repeats improve segregation analysis for cystic fibrosis. Clin Chem 2009; 55(7): 1372–1379
https://doi.org/10.1373/clinchem.2008.119545 pmid: 19443567
247 F Cariati, M Savarese, V D’Argenio, F Salvatore, R Tomaiuolo. The SEeMORE strategy: single-tube electrophoresis analysis-based genotyping to detect monogenic diseases rapidly and effectively from conception until birth. Clin Chem Lab Med 2017; 56(1): 40–50
https://doi.org/10.1515/cclm-2017-0147 pmid: 28787268
248 M Allyse, MA Minear, E Berson, S Sridhar, M Rote, A Hung, S Chandrasekharan. Non-invasive prenatal testing: a review of international implementation and challenges. Int J Womens Health 2015; 7: 113–126
https://doi.org/10.2147/IJWH.S67124 pmid: 25653560
249 EKL Chiu, WWI Hui, RWK Chiu. cfDNA screening and diagnosis of monogenic disorders—where are we heading?. Prenat Diagn 2018; 38(1): 52–58
https://doi.org/10.1002/pd.5207 pmid: 29314147
250 L Saba, M Masala, V Capponi, G Marceddu, M Massidda, MC Rosatelli. Non-invasive prenatal diagnosis of beta-thalassemia by semiconductor sequencing: a feasibility study in the sardinian population. Eur J Hum Genet 2017; 25(5): 600–607
https://doi.org/10.1038/ejhg.2017.26 pmid: 28272531
251 MI New, YK Tong, T Yuen, P Jiang, C Pina, KC Chan, A Khattab, GJ Liao, M Yau, SM Kim, RW Chiu, L Sun, M Zaidi, YM Lo. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab 2014; 99(6): E1022–E1030
https://doi.org/10.1210/jc.2014-1118 pmid: 24606108
252 MK Haahr, CH Jensen, NM Toyserkani, DC Andersen, P Damkier, JA Sørensen, L Lund, SP Sheikh. Safety and potential effect of a single intracavernous injection of autologous adipose-derived regenerative cells in patients with erectile dysfunction following radical prostatectomy: an open-label phase I clinical trial. EBioMedicine 2016; 5: 204–210
https://doi.org/10.1016/j.ebiom.2016.01.024 pmid: 27077129
253 M Mashayekhi, E Mirzadeh, Z Chekini, F Ahmadi, P Eftekhari-Yazdi, S Vesali, T Madani, N Aghdami. Evaluation of safety, feasibility and efficacy of intra-ovarian transplantation of autologous adipose derived mesenchymal stromal cells in idiopathic premature ovarian failure patients: non-randomized clinical trial, phase I, first in human. J Ovarian Res 2021; 14(1): 5
https://doi.org/10.1186/s13048-020-00743-3 pmid: 33407794
254 P Igboeli, A El Andaloussi, U Sheikh, H Takala, A ElSharoud, A McHugh, L Gavrilova-Jordan, S Levy, A Al-Hendy. Intraovarian injection of autologous human mesenchymal stem cells increases estrogen production and reduces menopausal symptoms in women with premature ovarian failure: two case reports and a review of the literature. J Med Case Reports 2020; 14(1): 108
https://doi.org/10.1186/s13256-020-02426-5 pmid: 32680541
255 YC Cheng, M Takagi, A Milbourne, RE Champlin, NT Ueno. Phase II study of gonadotropin-releasing hormone analog for ovarian function preservation in hematopoietic stem cell transplantation patients. Oncologist 2012; 17(2): 233–238
https://doi.org/10.1634/theoncologist.2011-0205 pmid: 22282904
256 Y Cao, H Sun, H Zhu, X Zhu, X Tang, G Yan, J Wang, D Bai, J Wang, L Wang, Q Zhou, H Wang, C Dai, L Ding, B Xu, Y Zhou, J Hao, J Dai, Y Hu. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: a phase I clinical trial. Stem Cell Res Ther 2018; 9(1): 192
https://doi.org/10.1186/s13287-018-0904-3 pmid: 29996892
257 W Yang, J Zhang, B Xu, Y He, W Liu, J Li, S Zhang, X Lin, D Su, T Wu, J Li. HucMSC-derived exosomes mitigate the age-related retardation of fertility in female mice. Mol Ther 2020; 28(4): 1200–1213
https://doi.org/10.1016/j.ymthe.2020.02.003 pmid: 32097602
258 M Spinosa, G Lu, G Su, SV Bontha, R Gehrau, MD Salmon, JR Smith, ML Weiss, VR Mas, GR Jr Upchurch, AK Sharma. Human mesenchymal stromal cell-derived extracellular vesicles attenuate aortic aneurysm formation and macrophage activation via microRNA-147. FASEB J 2018; 32(11): 6038–6050
https://doi.org/10.1096/fj.201701138RR pmid: 29812968
259 C Lo Sicco, D Reverberi, C Balbi, V Ulivi, E Principi, L Pascucci, P Becherini, MC Bosco, L Varesio, C Franzin, M Pozzobon, R Cancedda, R Tasso. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med 2017; 6(3): 1018–1028
https://doi.org/10.1002/sctm.16-0363 pmid: 28186708
260 C Ding, L Zhu, H Shen, J Lu, Q Zou, C Huang, H Li, B Huang. Exosomal miRNA-17-5p derived from human umbilical cord mesenchymal stem cells improves ovarian function in premature ovarian insufficiency by regulating SIRT7. Stem Cells 2020; 38(9): 1137–1148
https://doi.org/10.1002/stem.3204 pmid: 32442343
261 V Bodart-Santos, LRP de Carvalho, MA de Godoy, AF Batista, LM Saraiva, LG Lima, CA Abreu, FG De Felice, A Galina, R Mendez-Otero, ST Ferreira. Extracellular vesicles derived from human Wharton’s jelly mesenchymal stem cells protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. Stem Cell Res Ther 2019; 10(1): 332
https://doi.org/10.1186/s13287-019-1432-5 pmid: 31747944
262 S Chaubey, S Thueson, D Ponnalagu, MA Alam, CP Gheorghe, Z Aghai, H Singh, V Bhandari. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Res Ther 2018; 9(1): 173
https://doi.org/10.1186/s13287-018-0903-4 pmid: 29941022
263 C Yang, W Lim, J Park, S Park, S You, G Song. Anti-inflammatory effects of mesenchymal stem cell-derived exosomal microRNA-146a-5p and microRNA-548e-5p on human trophoblast cells. Mol Hum Reprod 2019; 25(11): 755–771
https://doi.org/10.1093/molehr/gaz054 pmid: 31588496
264 D Ti, H Hao, C Tong, J Liu, L Dong, J Zheng, Y Zhao, H Liu, X Fu, W Han. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 2015; 13(1): 308
https://doi.org/10.1186/s12967-015-0642-6 pmid: 26386558
265 MA Alzubi, SS Sohal, M Sriram, TH Turner, P Zot, M Idowu, JC Harrell. Quantitative assessment of breast cancer liver metastasis expansion with patient-derived xenografts. Clin Exp Metastasis 2019; 36(3): 257–269
https://doi.org/10.1007/s10585-019-09968-z pmid: 31069566
266 JD Anderson, HJ Johansson, CS Graham, M Vesterlund, MT Pham, CS Bramlett, EN Montgomery, MS Mellema, RL Bardini, Z Contreras, M Hoon, G Bauer, KD Fink, B Fury, KJ Hendrix, F Chedin, S El-Andaloussi, B Hwang, MS Mulligan, J Lehtiö, JA Nolta. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappaB signaling. Stem Cells 2016; 34(3): 601–613
https://doi.org/10.1002/stem.2298 pmid: 26782178
267 T Lopatina, S Bruno, C Tetta, N Kalinina, M Porta, G Camussi. Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun Signal 2014; 12(1): 26
https://doi.org/10.1186/1478-811X-12-26 pmid: 24725987
268 KS Park, K Svennerholm, GV Shelke, E Bandeira, C Lässer, SC Jang, R Chandode, I Gribonika, J Lötvall. Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10. Stem Cell Res Ther 2019; 10(1): 231
https://doi.org/10.1186/s13287-019-1352-4 pmid: 31370884
269 H Gonzalez-King, NA García, I Ontoria-Oviedo, M Ciria, JA Montero, P Sepúlveda. Hypoxia inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem Cells 2017; 35(7): 1747–1759
https://doi.org/10.1002/stem.2618 pmid: 28376567
270 M Gong, B Yu, J Wang, Y Wang, M Liu, C Paul, RW Millard, DS Xiao, M Ashraf, M Xu. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 2017; 8(28): 45200–45212
https://doi.org/10.18632/oncotarget.16778 pmid: 28423355
271 B Zhang, M Wang, A Gong, X Zhang, X Wu, Y Zhu, H Shi, L Wu, W Zhu, H Qian, W Xu. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells 2015; 33(7): 2158–2168
https://doi.org/10.1002/stem.1771 pmid: 24964196
272 G Baek, H Choi, Y Kim, HC Lee, C Choi. Mesenchymal stem cell-derived extracellular vesicles as therapeutics and as a drug delivery platform. Stem Cells Transl Med 2019; 8(9): 880–886
https://doi.org/10.1002/sctm.18-0226 pmid: 31045328
273 L Liu, Y Liu, C Feng, J Chang, R Fu, T Wu, F Yu, X Wang, L Xia, C Wu, B Fang. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis. Biomaterials 2019; 192: 523–536
https://doi.org/10.1016/j.biomaterials.2018.11.007 pmid: 30529871
274 M Yang, L Lin, C Sha, T Li, D Zhao, H Wei, Q Chen, Y Liu, X Chen, W Xu, Y Li, X Zhu. Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN. Lab Invest 2020; 100(3): 342–352
https://doi.org/10.1038/s41374-019-0321-y pmid: 31537899
275 J Zhao, X Li, J Hu, F Chen, S Qiao, X Sun, L Gao, J Xie, B Xu. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res 2019; 115(7): 1205–1216
https://doi.org/10.1093/cvr/cvz040 pmid: 30753344
276 A Eirin, XY Zhu, AS Puranik, JR Woollard, H Tang, S Dasari, A Lerman, AJ van Wijnen, LO Lerman. Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue-derived mesenchymal stem/stromal cells. Sci Rep 2016; 6(1): 36120
https://doi.org/10.1038/srep36120 pmid: 27786293
277 KR Vrijsen, JA Maring, SA Chamuleau, V Verhage, EA Mol, JC Deddens, CH Metz, K Lodder, EC van Eeuwijk, SM van Dommelen, PA Doevendans, AM Smits, MJ Goumans, JP Sluijter. Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Adv Healthc Mater 2016; 5(19): 2555–2565
https://doi.org/10.1002/adhm.201600308 pmid: 27570124
278 SK Crain, SR Robinson, KE Thane, AM Davis, DM Meola, BA Barton, VK Yang, AM Hoffman. Extracellular vesicles from Wharton’s jelly mesenchymal stem cells suppress CD4 expressing T cells through transforming growth factor beta and adenosine signaling in a canine model. Stem Cells Dev 2019; 28(3): 212–226
https://doi.org/10.1089/scd.2018.0097 pmid: 30412034
279 S Mardpour, AA Hamidieh, S Taleahmad, F Sharifzad, A Taghikhani, H Baharvand. Interaction between mesenchymal stromal cell-derived extracellular vesicles and immune cells by distinct protein content. J Cell Physiol 2019; 234(6): 8249–8258
https://doi.org/10.1002/jcp.27669 pmid: 30378105
280 C Merino-González, FA Zuñiga, C Escudero, V Ormazabal, C Reyes, E Nova-Lamperti, C Salomón, C Aguayo. Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application. Front Physiol 2016; 7: 24
https://doi.org/10.3389/fphys.2016.00024 pmid: 26903875
281 K Tsuji, S Kitamura, J Wada. Immunomodulatory and regenerative effects of mesenchymal stem cell-derived extracellular vesicles in renal diseases. Int J Mol Sci 2020; 21(3): 756
https://doi.org/10.3390/ijms21030756 pmid: 31979395
282 F Paduano, M Marrelli, F Palmieri, M Tatullo. CD146 expression influences periapical cyst mesenchymal stem cell properties. Stem Cell Rev Rep 2016; 12(5): 592–603
https://doi.org/10.1007/s12015-016-9674-4 pmid: 27406247
283 T Momose, H Miyaji, A Kato, K Ogawa, T Yoshida, E Nishida, S Murakami, Y Kosen, T Sugaya, M Kawanami. Collagen hydrogel scaffold and fibroblast growth factor-2 accelerate periodontal healing of class II furcation defects in dog. Open Dent J 2016; 10(1): 347–359
https://doi.org/10.2174/1874210601610010347 pmid: 27583044
284 I Cervelló, C Gil-Sanchis, X Santamaría, S Cabanillas, A Díaz, A Faus, A Pellicer, C Simón. Human CD133(+) bone marrow-derived stem cells promote endometrial proliferation in a murine model of Asherman syndrome. Fertil Steril 2015; 104(6): 1552–60.e1-3
https://doi.org/10.1016/j.fertnstert.2015.08.032 pmid: 26384164
285 SA Mohamed, SM Shalaby, M Abdelaziz, S Brakta, WD Hill, N Ismail, A Al-Hendy. Human mesenchymal stem cells partially reverse infertility in chemotherapy-induced ovarian failure. Reprod Sci 2018; 25(1): 51–63
https://doi.org/10.1177/1933719117699705 pmid: 28460567
286 SH Abd-Allah, SM Shalaby, HF Pasha, AS El-Shal, N Raafat, SM Shabrawy, HA Awad, MG Amer, MA Gharib, EA El Gendy, AA Raslan, HM El-Kelawy. Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits. Cytotherapy 2013; 15(1): 64–75
https://doi.org/10.1016/j.jcyt.2012.08.001 pmid: 23260087
287 D Fan, S Wu, S Ye, W Wang, X Guo, Z Liu. Umbilical cord mesenchyme stem cell local intramuscular injection for treatment of uterine niche: protocol for a prospective, randomized, double-blinded, placebo-controlled clinical trial. Medicine (Baltimore) 2017; 96(44): e8480
https://doi.org/10.1097/MD.0000000000008480 pmid: 29095305
288 J Li, Q Mao, J He, H She, Z Zhang, C Yin. Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism. Stem Cell Res Ther 2017; 8(1): 55
https://doi.org/10.1186/s13287-017-0514-5 pmid: 28279229
289 S Wang, L Yu, M Sun, S Mu, C Wang, D Wang, Y Yao. The therapeutic potential of umbilical cord mesenchymal stem cells in mice premature ovarian failure. Biomed Res Int 2013; 2013: 690491
https://doi.org/10.1155/2013/690491 pmid: 23998127
290 S Kilic, B Yuksel, F Pinarli, A Albayrak, B Boztok, T Delibasi. Effect of stem cell application on Asherman syndrome, an experimental rat model. J Assist Reprod Genet 2014; 31(8): 975–982
https://doi.org/10.1007/s10815-014-0268-2 pmid: 24974357
291 J Su, L Ding, J Cheng, J Yang, X Li, G Yan, H Sun, J Dai, Y Hu. Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency. Hum Reprod 2016; 31(5): 1075–1086
https://doi.org/10.1093/humrep/dew041 pmid: 26965432
292 P Terraciano, T Garcez, L Ayres, I Durli, M Baggio, CP Kuhl, C Laurino, E Passos, AH Paz, E Cirne-Lima. Cell therapy for chemically induced ovarian failure in mice. Stem Cells Int 2014; 2014: 720753
https://doi.org/10.1155/2014/720753 pmid: 25548574
[1] Yao Chen, Fahuan Song, Mengjiao Tu, Shuang Wu, Xiao He, Hao Liu, Caiyun Xu, Kai Zhang, Yuankai Zhu, Rui Zhou, Chentao Jin, Ping Wang, Hong Zhang, Mei Tian. Quantitative proteomics revealed extensive microenvironmental changes after stem cell transplantation in ischemic stroke[J]. Front. Med., 2022, 16(3): 429-441.
[2] Xiuli Zhang, Zhizhou Xia, Xingyu Lv, Donghe Li, Mingzhu Liu, Ruihong Zhang, Tong Ji, Ping Liu, Ruibao Ren. DDB1- and CUL4-associated factor 8 plays a critical role in spermatogenesis[J]. Front. Med., 2021, 15(2): 302-312.
[3] Raafat Hegazy,Abdelmonem Hegazy,Mustafa Ammar,Emad Salem. Immunohistochemical measurement and expression of Mcl-1 in infertile testes[J]. Front. Med., 2015, 9(3): 361-367.
[4] Yingchen Li,Guoheng Hu,Qilai Cheng. Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges[J]. Front. Med., 2015, 9(1): 20-29.
[5] Bao-Zhu Yuan, Junzhi Wang. The regulatory sciences for stem cell-based medicinal products[J]. Front. Med., 2014, 8(2): 190-200.
[6] Siming Yang, Kui Ma, Changjiang Feng, Yan Wu, Yao Wang, Sha Huang, Xiaobing Fu. Capacity of human umbilical cord-derived mesenchymal stem cells to differentiate into sweat gland-like cells: a preclinical study[J]. Front Med, 2013, 7(3): 345-353.
[7] Siming Yang, Sha Huang, Changjiang Feng, Xiaobing Fu. Umbilical cord-derived mesenchymal stem cells: strategies, challenges, and potential for cutaneous regeneration[J]. Front Med, 2012, 6(1): 41-47.
[8] Shihua Wang, Xuebin Qu, Robert Chunhua Zhao. Mesenchymal stem cells hold promise for regenerative medicine[J]. Front Med, 2011, 5(4): 372-378.
[9] Li LI, Jianxin JIANG. Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms[J]. Front Med, 2011, 5(1): 33-39.
[10] FANG Baijun, SONG Yongping, LIN Quande, ZHAO Chunhua, SHI Mingxia. Pluripotent stem cells exhibiting similar characteristics can be isolated from human fetal bone marrow, heart, liver, muscle, lung, derma, kidney, and fat[J]. Front. Med., 2007, 1(2): 185-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed