|
|
5′-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I |
Chengdong Wu, Dekai Liu, Lufei Zhang, Jingjie Wang, Yuan Ding, Zhongquan Sun, Weilin Wang( ) |
Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou 310009, China; Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China; Cancer Center, Zhejiang University, Hangzhou 310009, China |
|
|
Abstract tRNA-derived small RNAs (tsRNAs) are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases. However, their exact presence and function in hepatocellular carcinoma (HCC) remain unclear. Here, differentially expressed tsRNAs in HCC were profiled. A novel tsRNA, tRNAGln-TTG derived 5′-tiRNA-Gln, is significantly downregulated, and its expression level is correlated with progression in patients. In HCC cells, 5′-tiRNA-Gln overexpression impaired the proliferation, migration, and invasion in vitro and in vivo, while 5′-tiRNA-Gln knockdown yielded opposite results. 5′-tiRNA-Gln exerted its function by binding eukaryotic initiation factor 4A-I (EIF4A1), which unwinds complex RNA secondary structures during translation initiation, causing the partial inhibition of translation. The suppressed downregulated proteins include ARAF, MEK1/2 and STAT3, causing the impaired signaling pathway related to HCC progression. Furthermore, based on the construction of a mutant 5′-tiRNA-Gln, the sequence of forming intramolecular G-quadruplex structure is crucial for 5′-tiRNA-Gln to strongly bind EIF4A1 and repress translation. Clinically, 5′-tiRNA-Gln expression level is negatively correlated with ARAF, MEK1/2, and STAT3 in HCC tissues. Collectively, these findings reveal that 5′-tiRNA-Gln interacts with EIF4A1 to reduce related mRNA binding through the intramolecular G-quadruplex structure, and this process partially inhibits translation and HCC progression.
|
Keywords
EIF4A1
G-quadruplex
hepatocellular carcinoma
tRNA-derived small RNA
translation initiation
|
Corresponding Author(s):
Weilin Wang
|
Just Accepted Date: 21 February 2023
Online First Date: 27 March 2023
Issue Date: 28 July 2023
|
|
1 |
M Zhou, H Wang, X Zeng, P Yin, J Zhu, W Chen, X Li, L Wang, L Wang, Y Liu, J Liu, M Zhang, J Qi, S Yu, A Afshin, E Gakidou, S Glenn, VS Krish, MK Miller-Petrie, WC Mountjoy-Venning, EC Mullany, SB Redford, H Liu, M Naghavi, SI Hay, L Wang, CJL Murray, X Liang. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019; 394(10204): 1145–1158
https://doi.org/10.1016/S0140-6736(19)30427-1
pmid: 31248666
|
2 |
H Sung, J Ferlay, RL Siegel, M Laversanne, I Soerjomataram, A Jemal, F Bray. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249
https://doi.org/10.3322/caac.21660
pmid: 33538338
|
3 |
JD Yang, P Hainaut, GJ Gores, A Amadou, A Plymoth, LR Roberts. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16(10): 589–604
https://doi.org/10.1038/s41575-019-0186-y
pmid: 31439937
|
4 |
T Kobayashi, H Aikata, T Kobayashi, H Ohdan, K Arihiro, K Chayama. Patients with early recurrence of hepatocellular carcinoma have poor prognosis. Hepatobiliary Pancreat Dis Int 2017; 16(3): 279–288
https://doi.org/10.1016/S1499-3872(16)60181-9
pmid: 28603096
|
5 |
J Wang, S Zhu, N Meng, Y He, R Lu, GR Yan. ncRNA-encoded peptides or proteins and cancer. Mol Ther 2019; 27(10): 1718–1725
https://doi.org/10.1016/j.ymthe.2019.09.001
pmid: 31526596
|
6 |
CM Wong, FHC Tsang, IOL Ng. Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications. Nat Rev Gastroenterol Hepatol 2018; 15(3): 137–151
https://doi.org/10.1038/nrgastro.2017.169
pmid: 29317776
|
7 |
M Klingenberg, A Matsuda, S Diederichs, T Patel. Non-coding RNA in hepatocellular carcinoma: mechanisms, biomarkers and therapeutic targets. J Hepatol 2017; 67(3): 603–618
https://doi.org/10.1016/j.jhep.2017.04.009
pmid: 28438689
|
8 |
Z Su, B Wilson, P Kumar, A Dutta. Noncanonical roles of tRNAs: tRNA fragments and beyond. Annu Rev Genet 2020; 54(1): 47–69
https://doi.org/10.1146/annurev-genet-022620-101840
pmid: 32841070
|
9 |
HK Kim, JH Yeom, MA Kay. Transfer RNA-derived small RNAs: another layer of gene regulation and novel targets for disease therapeutics. Mol Ther 2020; 28(11): 2340–2357
https://doi.org/10.1016/j.ymthe.2020.09.013
pmid: 32956625
|
10 |
P Ivanov, MM Emara, J Villen, SP Gygi, P Anderson. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 2011; 43(4): 613–623
https://doi.org/10.1016/j.molcel.2011.06.022
pmid: 21855800
|
11 |
S Yamasaki, P Ivanov, GF Hu, P Anderson. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 2009; 185(1): 35–42
https://doi.org/10.1083/jcb.200811106
pmid: 19332886
|
12 |
S Li, GF Hu. Emerging role of angiogenin in stress response and cell survival under adverse conditions. J Cell Physiol 2012; 227(7): 2822–2826
https://doi.org/10.1002/jcp.23051
pmid: 22021078
|
13 |
YS Lee, Y Shibata, A Malhotra, A Dutta. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009; 23(22): 2639–2649
https://doi.org/10.1101/gad.1837609
pmid: 19933153
|
14 |
H Goodarzi, X Liu, HC Nguyen, S Zhang, L Fish, SF Tavazoie. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 2015; 161(4): 790–802
https://doi.org/10.1016/j.cell.2015.02.053
pmid: 25957686
|
15 |
LL Zheng, WL Xu, S Liu, WJ Sun, JH Li, J Wu, JH Yang, LH Qu. tRF2Cancer: a web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers. Nucleic Acids Res 2016; 44(W1): W185–93
https://doi.org/10.1093/nar/gkw414
pmid: 27179031
|
16 |
T Zeng, Y Hua, C Sun, Y Zhang, F Yang, M Yang, Y Yang, J Li, X Huang, H Wu, Z Fu, W Li, Y Yin. Relationship between tRNA-derived fragments and human cancers. Int J Cancer 2020; 147(11): 3007–3018
https://doi.org/10.1002/ijc.33107
pmid: 32427348
|
17 |
L Zhu, J Ge, T Li, Y Shen, J Guo. tRNA-derived fragments and tRNA halves: the new players in cancers. Cancer Lett 2019; 452: 31–37
https://doi.org/10.1016/j.canlet.2019.03.012
pmid: 30905816
|
18 |
R Magee, I Rigoutsos. On the expanding roles of tRNA fragments in modulating cell behavior. Nucleic Acids Res 2020; 48(17): 9433–9448
https://doi.org/10.1093/nar/gkaa657
pmid: 32890397
|
19 |
Q Chen, X Zhang, J Shi, M Yan, T Zhou. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem Sci 2021; 46(10): 790–804
https://doi.org/10.1016/j.tibs.2021.05.001
pmid: 34053843
|
20 |
MM Emara, P Ivanov, T Hickman, N Dawra, S Tisdale, N Kedersha, GF Hu, P Anderson. Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 2010; 285(14): 10959–10968
https://doi.org/10.1074/jbc.M109.077560
pmid: 20129916
|
21 |
SM Lyons, C Achorn, NL Kedersha, PJ Anderson, P Ivanov. YB-1 regulates tiRNA-induced stress granule formation but not translational repression. Nucleic Acids Res 2016; 44(14): 6949–6960
https://doi.org/10.1093/nar/gkw418
pmid: 27174937
|
22 |
HK Kim, G Fuchs, S Wang, W Wei, Y Zhang, H Park, B Roy-Chaudhuri, P Li, J Xu, K Chu, F Zhang, MS Chua, S So, QC Zhang, P Sarnow, MA Kay. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature 2017; 552(7683): 57–62
https://doi.org/10.1038/nature25005
pmid: 29186115
|
23 |
R Geslain, T Pan. Functional analysis of human tRNA isodecoders. J Mol Biol 2010; 396(3): 821–831
https://doi.org/10.1016/j.jmb.2009.12.018
pmid: 20026070
|
24 |
JM Goodenbour, T Pan. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res 2006; 34(21): 6137–6146
https://doi.org/10.1093/nar/gkl725
pmid: 17088292
|
25 |
P Kumar, SB Mudunuri, J Anaya, A Dutta. tRFdb: a database for transfer RNA fragments. Nucleic Acids Res 2015; 43(D1): D141–D145
https://doi.org/10.1093/nar/gku1138
pmid: 25392422
|
26 |
V Pliatsika, P Loher, R Magee, AG Telonis, E Londin, M Shigematsu, Y Kirino, I Rigoutsos. MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects. Nucleic Acids Res 2018; 46(D1): D152–D159
https://doi.org/10.1093/nar/gkx1075
pmid: 29186503
|
27 |
AG Hinnebusch. The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem 2014; 83(1): 779–812
https://doi.org/10.1146/annurev-biochem-060713-035802
pmid: 24499181
|
28 |
RJ Jackson, CUT Hellen, TV Pestova. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11(2): 113–127
https://doi.org/10.1038/nrm2838
pmid: 20094052
|
29 |
AL Wolfe, K Singh, Y Zhong, P Drewe, VK Rajasekhar, VR Sanghvi, KJ Mavrakis, M Jiang, JE Roderick, der Meulen J Van, JH Schatz, CM Rodrigo, C Zhao, P Rondou, Stanchina E de, J Teruya-Feldstein, MA Kelliher, F Speleman, JA Jr Porco, J Pelletier, G Rätsch, HG Wendel. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 2014; 513(7516): 65–70
https://doi.org/10.1038/nature13485
pmid: 25079319
|
30 |
A Modelska, E Turro, R Russell, J Beaton, T Sbarrato, K Spriggs, J Miller, S Gräf, E Provenzano, F Blows, P Pharoah, C Caldas, Quesne J Le. The malignant phenotype in breast cancer is driven by eIF4A1-mediated changes in the translational landscape. Cell Death Dis 2015; 6(1): e1603
https://doi.org/10.1038/cddis.2014.542
pmid: 25611378
|
31 |
K Singh, J Lin, N Lecomte, P Mohan, A Gokce, VR Sanghvi, M Jiang, O Grbovic-Huezo, A Burčul, SG Stark, PB Romesser, Q Chang, JP Melchor, RK Beyer, M Duggan, Y Fukase, G Yang, O Ouerfelli, A Viale, Stanchina E de, AW Stamford, PT Meinke, G Rätsch, SD Leach, Z Ouyang, HG Wendel. Targeting eIF4A-dependent translation of KRAS signaling molecules. Cancer Res 2021; 81(8): 2002–2014
https://doi.org/10.1158/0008-5472.CAN-20-2929
pmid: 33632898
|
32 |
S Iwasaki, W Iwasaki, M Takahashi, A Sakamoto, C Watanabe, Y Shichino, SN Floor, K Fujiwara, M Mito, K Dodo, M Sodeoka, H Imataka, T Honma, K Fukuzawa, T Ito, NT Ingolia. The translation inhibitor rocaglamide targets a bimolecular cavity between eIF4A and polypurine RNA. Mol Cell 2019; 73(4): 738–748.e9
https://doi.org/10.1016/j.molcel.2018.11.026
pmid: 30595437
|
33 |
O Kikin, L D’Antonio, PS Bagga. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res 2006; 34(suppl_2): W676–W682
https://doi.org/10.1093/nar/gkl253
pmid: 16845096
|
34 |
DF Calvisi, S Ladu, A Gorden, M Farina, EA Conner, JS Lee, VM Factor, SS Thorgeirsson. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006; 130(4): 1117–1128
https://doi.org/10.1053/j.gastro.2006.01.006
pmid: 16618406
|
35 |
B Delire, P Stärkel. The Ras/MAPK pathway and hepatocarcinoma: pathogenesis and therapeutic implications. Eur J Clin Invest 2015; 45(6): 609–623
https://doi.org/10.1111/eci.12441
pmid: 25832714
|
36 |
M Ranjpour, S Wajid, SK Jain. Elevated expression of A-Raf and FA2H in hepatocellular carcinoma is associated with lipid metabolism dysregulation and cancer progression. Anticancer Agents Med Chem 2019; 19(2): 236–247
https://doi.org/10.2174/1871520618666181015142810
pmid: 30324893
|
37 |
M Yu, B Lu, J Zhang, J Ding, P Liu, Y Lu. tRNA-derived RNA fragments in cancer: current status and future perspectives. J Hematol Oncol 2020; 13(1): 121
https://doi.org/10.1186/s13045-020-00955-6
pmid: 32887641
|
38 |
L Han, H Lai, Y Yang, J Hu, Z Li, B Ma, W Xu, W Liu, W Wei, D Li, Y Wang, Q Zhai, Q Ji, T Liao. A 5′-tRNA halve, tiRNA-Gly promotes cell proliferation and migration via binding to RBM17 and inducing alternative splicing in papillary thyroid cancer. J Exp Clin Cancer Res 2021; 40(1): 222
https://doi.org/10.1186/s13046-021-02024-3
pmid: 34225773
|
39 |
M Saikia, R Jobava, M Parisien, A Putnam, D Krokowski, XH Gao, BJ Guan, Y Yuan, E Jankowsky, Z Feng, GF Hu, M Pusztai-Carey, M Gorla, NB Sepuri, T Pan, M Hatzoglou. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol Cell Biol 2014; 34(13): 2450–2463
https://doi.org/10.1128/MCB.00136-14
pmid: 24752898
|
40 |
P Kumar, J Anaya, SB Mudunuri, A Dutta. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol 2014; 12(1): 78
https://doi.org/10.1186/s12915-014-0078-0
pmid: 25270025
|
41 |
P Kumar, C Kuscu, A Dutta. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem Sci 2016; 41(8): 679–689
https://doi.org/10.1016/j.tibs.2016.05.004
pmid: 27263052
|
42 |
L Guan, S Karaiskos, A Grigoriev. Inferring targeting modes of Argonaute-loaded tRNA fragments. RNA Biol 2020; 17(8): 1070–1080
https://doi.org/10.1080/15476286.2019.1676633
pmid: 31613177
|
43 |
T Venkatesh, PS Suresh, R Tsutsumi. tRFs: miRNAs in disguise. Gene 2016; 579(2): 133–138
https://doi.org/10.1016/j.gene.2015.12.058
pmid: 26743126
|
44 |
SM Lyons, P Kharel, Y Akiyama, S Ojha, D Dave, V Tsvetkov, W Merrick, P Ivanov, P Anderson. eIF4G has intrinsic G-quadruplex binding activity that is required for tiRNA function. Nucleic Acids Res 2020; 48(11): 6223–6233
https://doi.org/10.1093/nar/gkaa336
pmid: 32374873
|
45 |
P Ivanov, E O’Day, MM Emara, G Wagner, J Lieberman, P Anderson. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc Natl Acad Sci USA 2014; 111(51): 18201–18206
https://doi.org/10.1073/pnas.1407361111
pmid: 25404306
|
46 |
SM Lyons, D Gudanis, SM Coyne, Z Gdaniec, P Ivanov. Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs. Nat Commun 2017; 8(1): 1127
https://doi.org/10.1038/s41467-017-01278-w
pmid: 29066746
|
47 |
TM Nguyen, EB Kabotyanski, Y Dou, LC Reineke, P Zhang, XHF Zhang, A Malovannaya, SY Jung, Q Mo, KP Roarty, Y Chen, B Zhang, JR Neilson, RE Lloyd, CM Perou, MJ Ellis, JM Rosen. FGFR1-activated translation of WNT pathway components with structured 5′ UTRs is vulnerable to inhibition of EIF4A-dependent translation initiation. Cancer Res 2018; 78(15): 4229–4240
https://doi.org/10.1158/0008-5472.CAN-18-0631
pmid: 29844125
|
48 |
F Raza, JA Waldron, JL Quesne. Translational dysregulation in cancer: eIF4A isoforms and sequence determinants of eIF4A dependence. Biochem Soc Trans 2015; 43(6): 1227–1233
https://doi.org/10.1042/BST20150163
pmid: 26614665
|
49 |
G Biffi, M Di Antonio, D Tannahill, S Balasubramanian. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat Chem 2014; 6(1): 75–80
https://doi.org/10.1038/nchem.1805
pmid: 24345950
|
50 |
CK Kwok, CJ Merrick. G-Quadruplexes: prediction, characterization, and biological application. Trends Biotechnol 2017; 35(10): 997–1013
https://doi.org/10.1016/j.tibtech.2017.06.012
pmid: 28755976
|
51 |
S Zhan, P Yang, S Zhou, Y Xu, R Xu, G Liang, C Zhang, X Chen, L Yang, F Jin, Y Wang. Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis. Front Med 2022; 16(2): 216–226
https://doi.org/10.1007/s11684-022-0920-7
pmid: 35416630
|
52 |
L Zhu, J Li, Y Gong, Q Wu, S Tan, D Sun, X Xu, Y Zuo, Y Zhao, YQ Wei, XW Wei, Y Peng. Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Mol Cancer 2019; 18(1): 74
https://doi.org/10.1186/s12943-019-1000-8
pmid: 30940133
|
53 |
D Mo, P Jiang, Y Yang, X Mao, X Tan, X Tang, D Wei, B Li, X Wang, L Tang, F Yan. A tRNA fragment, 5′-tiRNAVal, suppresses the Wnt/β-catenin signaling pathway by targeting FZD3 in breast cancer. Cancer Lett 2019; 457: 60–73
https://doi.org/10.1016/j.canlet.2019.05.007
pmid: 31078732
|
54 |
Y Wu, X Yang, G Jiang, H Zhang, L Ge, F Chen, J Li, H Liu, H Wang. 5′-tRF-GlyGCC: a tRNA-derived small RNA as a novel biomarker for colorectal cancer diagnosis. Genome Med 2021; 13(1): 20
https://doi.org/10.1186/s13073-021-00833-x
pmid: 33563322
|
55 |
M Yu, B Lu, J Zhang, J Ding, P Liu, Y Lu. tRNA-derived RNA fragments in cancer: current status and future perspectives. J Hematol Oncol 2020; 13(1): 121
https://doi.org/10.1186/s13045-020-00955-6
pmid: 32887641
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|