|
|
Berberine alleviates myocardial diastolic dysfunction by modulating Drp1-mediated mitochondrial fission and Ca2+ homeostasis in a murine model of HFpEF |
Miyesaier Abudureyimu1, Mingjie Yang2,3,4,5, Xiang Wang1, Xuanming Luo6, Junbo Ge2,3,4,5( ), Hu Peng7( ), Yingmei Zhang2,3,4,5( ), Jun Ren2,3,4,5,8( ) |
1. Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, China 2. Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China 3. Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China 4. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China 5. National Clinical Research Center for Interventional Medicine, Shanghai 200032, China 6. Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, China 7. Department of Geriatrics, Shanghai Tenth Hospital, Tongji University, Shanghai 200072, China 8. Department of Medical Laboratory and Pathology, University of Washington, Seattle, WA 98195, USA |
|
|
Abstract Heart failure with preserved ejection fraction (HFpEF) displays normal or near-normal left ventricular ejection fraction, diastolic dysfunction, cardiac hypertrophy, and poor exercise capacity. Berberine, an isoquinoline alkaloid, possesses cardiovascular benefits. Adult male mice were assigned to chow or high-fat diet with L-NAME (“two-hit” model) for 15 weeks. Diastolic function was assessed using echocardiography and non-invasive Doppler technique. Myocardial morphology, mitochondrial ultrastructure, and cardiomyocyte mechanical properties were evaluated. Proteomics analysis, autophagic flux, and intracellular Ca2+ were also assessed in chow and HFpEF mice. The results show exercise intolerance and cardiac diastolic dysfunction in “two-hit”-induced HFpEF model, in which unfavorable geometric changes such as increased cell size, interstitial fibrosis, and mitochondrial swelling occurred in the myocardium. Diastolic dysfunction was indicated by the elevated E value, mitral E/A ratio, and E/e’ ratio, decreased e’ value and maximal velocity of re-lengthening (–dL/dt), and prolonged re-lengthening in HFpEF mice. The effects of these processes were alleviated by berberine. Moreover, berberine ameliorated autophagic flux, alleviated Drp1 mitochondrial localization, mitochondrial Ca2+ overload and fragmentation, and promoted intracellular Ca2+ reuptake into sarcoplasmic reticulum by regulating phospholamban and SERCA2a. Finally, berberine alleviated diastolic dysfunction in “two-hit” diet-induced HFpEF model possibly because of the promotion of autophagic flux, inhibition of mitochondrial fragmentation, and cytosolic Ca2+ overload.
|
Keywords
HFpEF
berberine
Drp1
autophagy
Ca2+
|
Corresponding Author(s):
Junbo Ge,Hu Peng,Yingmei Zhang,Jun Ren
|
Just Accepted Date: 24 April 2023
Online First Date: 31 August 2023
Issue Date: 06 February 2024
|
|
1 |
H Tsutsui. Recent advances in the pharmacological therapy of chronic heart failure: evidence and guidelines. Pharmacol Ther 2022; 238: 108185
https://doi.org/10.1016/j.pharmthera.2022.108185
pmid: 35413307
|
2 |
JE Ho, MM Redfield, GD Lewis, WJ Paulus, CSP Lam. Deliberating the diagnostic dilemma of heart failure with preserved ejection fraction. Circulation 2020; 142(18): 1770–1780
https://doi.org/10.1161/CIRCULATIONAHA.119.041818
pmid: 33136513
|
3 |
M Abudureyimu, X Luo, X Wang, JR Sowers, W Wang, J Ge, J Ren, Y Zhang. Heart failure with preserved ejection fraction (HFpEF) in type 2 diabetes mellitus: from pathophysiology to therapeutics. J Mol Cell Biol 2022; 14(5): mjac028
https://doi.org/10.1093/jmcb/mjac028
pmid: 35511596
|
4 |
Y Zheng, S Ma, Q Huang, Y Fang, H Tan, Y Chen, C Li. Meta-analysis of the efficacy and safety of finerenone in diabetic kidney disease. Kidney Blood Press Res 2022; 47(4): 219–228
https://doi.org/10.1159/000521908
pmid: 35034019
|
5 |
BA Borlaug. Evaluation and management of heart failure with preserved ejection fraction. Nat Rev Cardiol 2020; 17(9): 559–573
https://doi.org/10.1038/s41569-020-0363-2
pmid: 32231333
|
6 |
Y Zhang, AT Whaley-Connell, JR Sowers, J Ren. Autophagy as an emerging target in cardiorenal metabolic disease: from pathophysiology to management. Pharmacol Ther 2018; 191: 1–22
https://doi.org/10.1016/j.pharmthera.2018.06.004
pmid: 29909238
|
7 |
L Rosalia, C Ozturk, S Shoar, Y Fan, G Malone, FH Cheema, C Conway, RA Byrne, GP Duffy, A Malone, ET Roche, A Hameed. Device-based solutions to improve cardiac physiology and hemodynamics in heart failure with preserved ejection fraction. JACC Basic Transl Sci 2021; 6(9–10): 772–795
https://doi.org/10.1016/j.jacbts.2021.06.002
pmid: 34754993
|
8 |
SJ Shah, BA Borlaug, DW Kitzman, AD McCulloch, BC Blaxall, R Agarwal, JA Chirinos, S Collins, RC Deo, MT Gladwin, H Granzier, SL Hummel, DA Kass, MM Redfield, F Sam, TJ Wang, P Desvigne-Nickens, BB Adhikari. Research priorities for heart failure with preserved ejection fraction: National Heart, Lung, and Blood Institute Working Group summary. Circulation 2020; 141(12): 1001–1026
https://doi.org/10.1161/CIRCULATIONAHA.119.041886
pmid: 32202936
|
9 |
Y Cai, Q Xin, J Lu, Y Miao, Q Lin, W Cong, K Chen. A new therapeutic candidate for cardiovascular diseases: berberine. Front Pharmacol 2021; 12: 631100
https://doi.org/10.3389/fphar.2021.631100
pmid: 33815112
|
10 |
AF Ceylan-Isik, RM Fliethman, LE Wold, J Ren. Herbal and traditional Chinese medicine for the treatment of cardiovascular complications in diabetes mellitus. Curr Diabetes Rev 2008; 4(4): 320–328
https://doi.org/10.2174/157339908786241142
pmid: 18991600
|
11 |
X Ai, P Yu, L Peng, L Luo, J Liu, S Li, X Lai, F Luan, X Meng. Berberine: a review of its pharmacokinetics properties and therapeutic potentials in diverse vascular diseases. Front Pharmacol 2021; 12: 762654
https://doi.org/10.3389/fphar.2021.762654
pmid: 35370628
|
12 |
RY Cao, Y Zhang, Z Feng, S Liu, Y Liu, H Zheng, J Yang. The effective role of natural product berberine in modulating oxidative stress and inflammation related atherosclerosis: novel insights into the gut-heart axis evidenced by genetic sequencing analysis. Front Pharmacol 2021; 12: 764994
https://doi.org/10.3389/fphar.2021.764994
pmid: 35002703
|
13 |
N An, G Zhang, Y Li, C Yuan, F Yang, L Zhang, Y Gao, Y Xing. Promising antioxidative effect of berberine in cardiovascular diseases. Front Pharmacol 2022; 13: 865353
https://doi.org/10.3389/fphar.2022.865353
pmid: 35321323
|
14 |
M Abudureyimu, W Yu, RY Cao, Y Zhang, H Liu, H Zheng. Berberine promotes cardiac function by upregulating PINK1/parkin-mediated mitophagy in heart failure. Front Physiol 2020; 11: 565751
https://doi.org/10.3389/fphys.2020.565751
pmid: 33101051
|
15 |
AA Kumar, DP Kelly, JA Chirinos. Mitochondrial dysfunction in heart failure with preserved ejection fraction. Circulation 2019; 139(11): 1435–1450
https://doi.org/10.1161/CIRCULATIONAHA.118.036259
pmid: 30856000
|
16 |
GG Schiattarella, F Altamirano, D Tong, KM French, E Villalobos, SY Kim, X Luo, N Jiang, HI May, ZV Wang, TM Hill, PPA Mammen, J Huang, DI Lee, VS Hahn, K Sharma, DA Kass, S Lavandero, TG Gillette, JA Hill. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 2019; 568(7752): 351–356
https://doi.org/10.1038/s41586-019-1100-z
pmid: 30971818
|
17 |
M Madikyzy, M Tilegen, G Nazarbek, C Mu, A Kutzhanova, X Li, C Ma, Y Xie. Honghua extract mediated potent inhibition of COVID-19 host cell pathways. Sci Rep 2022; 12(1): 14296
https://doi.org/10.1038/s41598-022-15338-9
pmid: 35995784
|
18 |
M Galderisi, B Cosyns, T Edvardsen, N Cardim, V Delgado, Salvo G Di, E Donal, LE Sade, L Ernande, M Garbi, J Grapsa, A Hagendorff, O Kamp, J Magne, C Santoro, A Stefanidis, P Lancellotti, B Popescu, G; 2016–2018 EACVI Scientific Documents Committee Habib. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2017; 18(12): 1301–1310
https://doi.org/10.1093/ehjci/jex244
pmid: 29045589
|
19 |
J Ren, M Sun, H Zhou, A Ajoolabady, Y Zhou, J Tao, JR Sowers, Y Zhang. FUNDC1 interacts with FBXL2 to govern mitochondrial integrity and cardiac function through an IP3R3-dependent manner in obesity. Sci Adv 2020; 6(38): eabc8561
https://doi.org/10.1126/sciadv.abc8561
pmid: 32938669
|
20 |
GP Stefani, L Capalonga, LR da Silva, TG Heck, MN Frizzo, LM Sulzbacher, MM Sulzbacher, D de Batista, S Vedovatto, APS Bertoni, MR Wink, P Dal Lago. Effects of aerobic and resistance exercise training associated with carnosine precursor supplementation on maximal strength and V̇O2max in rats with heart failure. Life Sci 2021; 282: 119816
https://doi.org/10.1016/j.lfs.2021.119816
pmid: 34273376
|
21 |
W Yu, X Qin, Y Zhang, P Qiu, L Wang, W Zha, J Ren. Curcumin suppresses doxorubicin-induced cardiomyocyte pyroptosis via a PI3K/Akt/mTOR-dependent manner. Cardiovasc Diagn Ther 2020; 10(4): 752–769
https://doi.org/10.21037/cdt-19-707
pmid: 32968631
|
22 |
H Xu, W Yu, S Sun, C Li, J Ren, Y Zhang. TAX1BP1 protects against myocardial infarction-associated cardiac anomalies through inhibition of inflammasomes in a RNF34/MAVS/NLRP3-dependent manner. Sci Bull (Beijing) 2021; 66(16): 1669–1683
https://doi.org/10.1016/j.scib.2021.01.030
pmid: 36654301
|
23 |
H Huang, M Li, Y Wang, X Wu, J Shen, Z Xiao, Y Zhao, F Du, Y Chen, Z Wu, H Ji, C Zhang, J Li, Q Wen, PJ Kaboli, CH Cho, S Wang, Y Wang, Y He, X Wu. Excessive intake of longan arillus alters gut homeostasis and aggravates colitis in mice. Front Pharmacol 2021; 12: 640417
https://doi.org/10.3389/fphar.2021.640417
pmid: 33841158
|
24 |
J Li, H Li, S Cai, S Bai, H Cai, X Zhang. CD157 in bone marrow mesenchymal stem cells mediates mitochondrial production and transfer to improve neuronal apoptosis and functional recovery after spinal cord injury. Stem Cell Res Ther 2021; 12(1): 289
https://doi.org/10.1186/s13287-021-02305-w
pmid: 34001228
|
25 |
Z Song, H Song, D Liu, B Yan, D Wang, Y Zhang, X Zhao, X Tian, C Yan, Y Han. Overexpression of MFN2 alleviates sorafenib-induced cardiomyocyte necroptosis via the MAM-CaMKIIδ pathway in vitro and in vivo. Theranostics 2022; 12(3): 1267–1285
https://doi.org/10.7150/thno.65716
pmid: 35154486
|
26 |
H Xu, W Yu, S Sun, C Li, Y Zhang, J Ren. Luteolin attenuates doxorubicin-induced cardiotoxicity through promoting mitochondrial autophagy. Front Physiol 2020; 11: 113
https://doi.org/10.3389/fphys.2020.00113
pmid: 32116805
|
27 |
S Sun, W Yu, H Xu, C Li, R Zou, NN Wu, L Wang, J Ge, J Ren, Y Zhang. TBC1D15-Drp1 interaction-mediated mitochondrial homeostasis confers cardioprotection against myocardial ischemia/reperfusion injury. Metabolism 2022; 134: 155239
https://doi.org/10.1016/j.metabol.2022.155239
pmid: 35680100
|
28 |
L Yang, P Xie, J Wu, J Yu, X Li, H Ma, T Yu, H Wang, J Ye, J Wang, H Zheng. Deferoxamine treatment combined with sevoflurane postconditioning attenuates myocardial ischemia-reperfusion injury by restoring HIF-1/BNIP3-mediated mitochondrial autophagy in GK rats. Front Pharmacol 2020; 11: 6
https://doi.org/10.3389/fphar.2020.00006
pmid: 32140105
|
29 |
X Wang, Y Jiang, Y Zhang, Q Sun, G Ling, J Jiang, W Li, X Tian, Q Jiang, L Lu, Y Wang. The roles of the mitophagy inducer Danqi pill in heart failure: a new therapeutic target to preserve energy metabolism. Phytomedicine 2022; 99: 154009
https://doi.org/10.1016/j.phymed.2022.154009
pmid: 35217438
|
30 |
AJ Kowaltowski, SL Menezes-Filho, EA Assali, IG Gonçalves, JV Cabral-Costa, P Abreu, N Miller, P Nolasco, FRM Laurindo, A Bruni-Cardoso, OS Shirihai. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis. FASEB J 2019; 33(12): 13176–13188
https://doi.org/10.1096/fj.201901136R
pmid: 31480917
|
31 |
N Zhu, B Huang, L Zhu, Y Wang. Potential mechanisms of triptolide against diabetic cardiomyopathy based on network pharmacology analysis and molecular docking. J Diabetes Res 2021; 2021: 9944589
https://doi.org/10.1155/2021/9944589
pmid: 34926700
|
32 |
LE Wold, DP Relling, J Duan, FL Norby, J Ren. Abrogated leptin-induced cardiac contractile response in ventricular myocytes under spontaneous hypertension: role of Jak/STAT pathway. Hypertension 2002; 39(1): 69–74
https://doi.org/10.1161/hy0102.100777
pmid: 11799081
|
33 |
SJ Shah, DW Kitzman, BA Borlaug, L van Heerebeek, MR Zile, DA Kass, WJ Paulus. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 2016; 134(1): 73–90
https://doi.org/10.1161/CIRCULATIONAHA.116.021884
pmid: 27358439
|
34 |
M Tong, D Zablocki, J Sadoshima. The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol 2020; 142: 138–145
https://doi.org/10.1016/j.yjmcc.2020.04.015
pmid: 32302592
|
35 |
JR Friedman, J Nunnari. Mitochondrial form and function. Nature 2014; 505(7483): 335–343
https://doi.org/10.1038/nature12985
pmid: 24429632
|
36 |
A Picca, RT Mankowski, JL Burman, L Donisi, JS Kim, E Marzetti, C Leeuwenburgh. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol 2018; 15(9): 543–554
https://doi.org/10.1038/s41569-018-0059-z
pmid: 30042431
|
37 |
SC Kamerkar, F Kraus, AJ Sharpe, TJ Pucadyil, MT Ryan. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat Commun 2018; 9(1): 5239
https://doi.org/10.1038/s41467-018-07543-w
pmid: 30531964
|
38 |
Y Ikeda, A Shirakabe, Y Maejima, P Zhai, S Sciarretta, J Toli, M Nomura, K Mihara, K Egashira, M Ohishi, M Abdellatif, J Sadoshima. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res 2015; 116(2): 264–278
https://doi.org/10.1161/CIRCRESAHA.116.303356
pmid: 25332205
|
39 |
A Ajoolabady, M Chiong, S Lavandero, DJ Klionsky, J Ren. Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment. Trends Mol Med 2022; 28(10): 836–849
https://doi.org/10.1016/j.molmed.2022.06.007
pmid: 35879138
|
40 |
S Xu, P Wang, H Zhang, G Gong, N Gutierrez Cortes, W Zhu, Y Yoon, R Tian, W Wang. CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation. Nat Commun 2016; 7(1): 13189
https://doi.org/10.1038/ncomms13189
pmid: 27739424
|
41 |
BS Jhun, J O-Uchi, SM Adaniya, TJ Mancini, JL Cao, ME King, AK Landi, H Ma, M Shin, D Yang, X Xu, Y Yoon, G Choudhary, RT Clements, U Mende, SS Sheu. Protein kinase D activation induces mitochondrial fragmentation and dysfunction in cardiomyocytes. J Physiol 2018; 596(5): 827–855
https://doi.org/10.1113/JP275418
pmid: 29313986
|
42 |
Y Kageyama, M Hoshijima, K Seo, D Bedja, P Sysa-Shah, SA Andrabi, W Chen, A Höke, VL Dawson, TM Dawson, K Gabrielson, DA Kass, M Iijima, H Sesaki. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 2014; 33(23): 2798–2813
https://doi.org/10.15252/embj.201488658
pmid: 25349190
|
43 |
H Zhang, P Wang, S Bisetto, Y Yoon, Q Chen, SS Sheu, W Wang. A novel fission-independent role of dynamin-related protein 1 in cardiac mitochondrial respiration. Cardiovasc Res 2017; 113(2): 160–170
https://doi.org/10.1093/cvr/cvw212
pmid: 27794519
|
44 |
S Wasiak, R Zunino, HM McBride. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 2007; 177(3): 439–450
https://doi.org/10.1083/jcb.200610042
pmid: 17470634
|
45 |
J Shou, Y Huo. PINK1 phosphorylates Drp1S616 to improve mitochondrial fission and inhibit the progression of hypertension-induced HFpEF. Int J Mol Sci 2022; 23(19): 11934
https://doi.org/10.3390/ijms231911934
pmid: 36233236
|
46 |
AH Chaanine, LD Joyce, JM Stulak, S Maltais, DL Joyce, JA Dearani, K Klaus, KS Nair, RJ Hajjar, MM Redfield. Mitochondrial morphology, dynamics, and function in human pressure overload or ischemic heart disease with preserved or reduced ejection fraction. Circ Heart Fail 2019; 12(2): e005131
https://doi.org/10.1161/CIRCHEARTFAILURE.118.005131
pmid: 30744415
|
47 |
G Favaro, V Romanello, T Varanita, M Andrea Desbats, V Morbidoni, C Tezze, M Albiero, M Canato, G Gherardi, D De Stefani, C Mammucari, B Blaauw, S Boncompagni, F Protasi, C Reggiani, L Scorrano, L Salviati, M Sandri. DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nat Commun 2019; 10(1): 2576
https://doi.org/10.1038/s41467-019-10226-9
pmid: 31189900
|
48 |
Q Zhao, D Lu, J Wang, B Liu, H Cheng, MP Mattson, A Cheng. Calcium dysregulation mediates mitochondrial and neurite outgrowth abnormalities in SOD2 deficient embryonic cerebral cortical neurons. Cell Death Differ 2019; 26(9): 1600–1614
https://doi.org/10.1038/s41418-018-0230-4
pmid: 30390091
|
49 |
G Morciano, A Rimessi, S Patergnani, VAM Vitto, A Danese, A Kahsay, L Palumbo, M Bonora, MR Wieckowski, C Giorgi, P Pinton. Calcium dysregulation in heart diseases: targeting calcium channels to achieve a correct calcium homeostasis. Pharmacol Res 2022; 177: 106119
https://doi.org/10.1016/j.phrs.2022.106119
pmid: 35131483
|
50 |
Siri-Angkul N, Dadfar B, Jaleel R, Naushad J, Parambathazhath J, Doye AA, Xie LH, Gwathmey JK. Calcium and heart failure: how did we get here and where are we going? Int J Mol Sci 2021; 22(14): 7392 doi:10.3390/ijms22147392
pmid: 34299010
|
51 |
GS Williams, L Boyman, AC Chikando, RJ Khairallah, WJ Lederer. Mitochondrial calcium uptake. Proc Natl Acad Sci USA 2013; 110(26): 10479–10486
https://doi.org/10.1073/pnas.1300410110
pmid: 23759742
|
52 |
JF Garbincius, JW Elrod. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102(2): 893–992
https://doi.org/10.1152/physrev.00041.2020
pmid: 34698550
|
53 |
D Miranda-Silva, RCI Wüst, G Conceição, P Gonçalves-Rodrigues, N Gonçalves, A Gonçalves, DWD Kuster, AF Leite-Moreira, der Velden J van, Sousa Beleza JM de, J Magalhães, GJM Stienen, I Falcão-Pires. Disturbed cardiac mitochondrial and cytosolic calcium handling in a metabolic risk-related rat model of heart failure with preserved ejection fraction. Acta Physiol (Oxf) 2020; 228(3): e13378
https://doi.org/10.1111/apha.13378
pmid: 31520455
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|