Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (6) : 1219-1235    https://doi.org/10.1007/s11684-023-0983-0
Berberine alleviates myocardial diastolic dysfunction by modulating Drp1-mediated mitochondrial fission and Ca2+ homeostasis in a murine model of HFpEF
Miyesaier Abudureyimu1, Mingjie Yang2,3,4,5, Xiang Wang1, Xuanming Luo6, Junbo Ge2,3,4,5(), Hu Peng7(), Yingmei Zhang2,3,4,5(), Jun Ren2,3,4,5,8()
1. Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, China
2. Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
3. Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
4. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
5. National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
6. Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, China
7. Department of Geriatrics, Shanghai Tenth Hospital, Tongji University, Shanghai 200072, China
8. Department of Medical Laboratory and Pathology, University of Washington, Seattle, WA 98195, USA
 Download: PDF(6742 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Heart failure with preserved ejection fraction (HFpEF) displays normal or near-normal left ventricular ejection fraction, diastolic dysfunction, cardiac hypertrophy, and poor exercise capacity. Berberine, an isoquinoline alkaloid, possesses cardiovascular benefits. Adult male mice were assigned to chow or high-fat diet with L-NAME (“two-hit” model) for 15 weeks. Diastolic function was assessed using echocardiography and non-invasive Doppler technique. Myocardial morphology, mitochondrial ultrastructure, and cardiomyocyte mechanical properties were evaluated. Proteomics analysis, autophagic flux, and intracellular Ca2+ were also assessed in chow and HFpEF mice. The results show exercise intolerance and cardiac diastolic dysfunction in “two-hit”-induced HFpEF model, in which unfavorable geometric changes such as increased cell size, interstitial fibrosis, and mitochondrial swelling occurred in the myocardium. Diastolic dysfunction was indicated by the elevated E value, mitral E/A ratio, and E/e’ ratio, decreased e’ value and maximal velocity of re-lengthening (–dL/dt), and prolonged re-lengthening in HFpEF mice. The effects of these processes were alleviated by berberine. Moreover, berberine ameliorated autophagic flux, alleviated Drp1 mitochondrial localization, mitochondrial Ca2+ overload and fragmentation, and promoted intracellular Ca2+ reuptake into sarcoplasmic reticulum by regulating phospholamban and SERCA2a. Finally, berberine alleviated diastolic dysfunction in “two-hit” diet-induced HFpEF model possibly because of the promotion of autophagic flux, inhibition of mitochondrial fragmentation, and cytosolic Ca2+ overload.

Keywords HFpEF      berberine      Drp1      autophagy      Ca2+     
Corresponding Author(s): Junbo Ge,Hu Peng,Yingmei Zhang,Jun Ren   
Just Accepted Date: 24 April 2023   Online First Date: 31 August 2023    Issue Date: 06 February 2024
 Cite this article:   
Miyesaier Abudureyimu,Mingjie Yang,Xiang Wang, et al. Berberine alleviates myocardial diastolic dysfunction by modulating Drp1-mediated mitochondrial fission and Ca2+ homeostasis in a murine model of HFpEF[J]. Front. Med., 2023, 17(6): 1219-1235.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-023-0983-0
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I6/1219
Fig.1  Berberine-related pathways from PubChem database. (A, B) GO enrichment bubble plots of top ranked biological processes and cellular components in berberine-related pathways; (C) GO enrichment bar chart of top 10 ranked terms by molecular function in berberine-related pathways; and (D) GO chord plot of top 10 ranked terms by biological process in berberine-related pathways. Genes are linked to their assigned terms via colored ribbons.
Fig.2  Echocardiographic parameters of chow and HFpEF mice with or without berberine treatment. (A) Survival curve for different doses of berberine treatment. All mice treated with berberine (50 mg/kg/d, p.o.) survived after 3 weeks; (B) Illustration of experimental protocol. C57BL/6N male mice were maintained on chow or a high-fat diet (HFD, 60% of calories from fat) plus L-NAME in drinking water (0.5 g/L) for 15 weeks. Berberine was orally administered daily for the last 4 weeks in the HFpEF and chow groups; (C) Heart rate; (D) Representative images of M-mode (upper), mitral valve pulse-wave Doppler (middle), and tissue Doppler imaging (TDI, bottom); (E) LV end-diastolic diameter; (F) LV end-systolic diameter; (G) LV ejection fraction; (H) Fractional shortening; (I) Interventricular septum in diastole (d); (J) LV mass (mg); (K) Posterior wall thickness in diastole (d); (L) E wave velocity; (M) e’ wave velocity; (N) A wave velocity; (O) Mitral E/A ratio; (P) Mitral E/e' ratio. Mean ± SEM, n = 8 mice per group, *P < 0.05 vs. chow group, # P < 0.05 vs. HFpEF group.
Fig.3  General biometric parameters of chow and HFpEF mice with or without berberine treatment. (A) Representative gross images of mice; (B) Body weight; (C) Running distance; (D) Heart weight-to-tibia ratio; (E) Lung weight (wet-to-dry ratio); (F) Systolic blood pressure; (G) Diastolic blood pressure; (H) Intraperitoneal glucose tolerance test (IPGTT); (I) IPGTT area under curve; (J) Total cholesterol; (K) Total triglyceride; (L) Low-density lipoprotein; and (M) High-density lipoprotein. Mean ± SEM, n = 8 mice per group, *P < 0.05 vs. chow group, # P < 0.05 vs. HFpEF group.
Fig.4  Hematoxylin and eosin (H&E), Masson trichrome, and WGA staining images, and Western blots of markers for cardiac injury in chow and HFpEF mice with or without berberine treatment. (A) Representative gross images of mouse hearts, H&E staining, Masson staining, and WGA staining of myocardial sections; (B) Quantitative analysis of interstitial fibrosis; (C) Quantitative analysis of cardiomyocyte cross-sectional area; (D) Representative gel blots and quantitative analysis of anti-atrial natriuretic peptide (E), anti-natriuretic peptide B (F), and anti-myosin heavy chain β (G) by using specific antibodies (β-actin for loading control). Mean ± SEM, n = 6 mice per group, *P < 0.05 versus chow group, # P < 0.05 versus HFpEF group.
Fig.5  DHE, TUNEL staining, mitochondrial TEM ultrastructure and function, and Western blot analysis of autophagy in myocardium from chow and HFpEF mice with or without berberine treatment. (A) Representative images of myocardial DHE staining from chow and HFpEF mice with or without berberine treatment; (B) Quantitative analysis of ROS intensity in cardiomyocytes; (C) Representative images of TUNEL staining of myocardial sections from chow and HFpEF mice with or without berberine treatment; (D) Quantitative analysis of TUNEL positive cardiomyocytes; (E) Representative TEM images of mitochondria and sarcomere ultrastructure; (F–H) Quantitative analysis of major axis length, density, and perimeter of mitochondria in TEM images; (I, K–L) Representative immunoblots and quantitative analysis of pro-apoptotic proteins Bax and mitochondrial injury marker UCP2 by using specific antibodies (β-actin for loading control); (M–P) Representative immunoblots and quantitative analysis of the autophagic proteins LC3B, p62, Atg5, and Atg7 (β-actin for loading control); (J, Q–U) Representative immunoblots and quantitative analysis of mitochondrial function related proteins CS, PDH, SDH, ATPase, PGC-1α (β-actin for loading control); (V) ATP content level. Mean ± SEM, n = 6–8 mice per group, *P < 0.05 versus chow group, # P < 0.05 versus HFpEF group.
Fig.6  Proteomics and immunoblot analysis of mitochondrial dynamic and Ca2+-related proteins in myocardium from chow and HFpEF mice with or without berberine treatment. (A) Top 20 of KEGG enrichment from the proteomics of heart tissues from chow and HFpEF mice; (B) Heatmap that illustrates differentially expressed proteins from the proteomics of heart tissues from chow and HFpEF mice; (C–E) The 3D structure of binding conformation between Drp1 and berberine. Two predicted binding modalities were observed between Drp1 and berberine labeled with dotted lines; and (F–N) Representative immunoblots and quantitative analysis of Ca2+-related proteins, including NCX, CAMKII, SERCA2a, PLN, VDAC1, MCU, RYR1, and IP3R1 (β-actin for loading control). (O–X) Representative immunoblots and quantitative analysis of Drp1 and phosphorylation of Drp1 in total cell lysates, mitochondrial and cytoplasmic fractions (β-actin or VDAC1 for loading control); Mean ± SEM, n = 6 mice per group for proteomics and Western blot analysis, *P < 0.05 versus chow group, # P < 0.05 versus HFpEF group.
Fig.7  Cardiomyocyte contractile and diastolic and intracellular Ca2+ properties in chow and HFpEF mice with or without berberine treatment. (A) Illustration of contractile and diastolic properties; (B) Resting cell length; (C) Peak shortening (normalized to resting cell length); (D) Maximal velocity of shortening (dL/dt); (E) Maximal velocity of re-lengthening (–dL/dt); (F) Time-to-10%/50%/90% peak shortening (TP10/50/90); (G) Time-to-10%/50%/90% re-lengthening (TR10/50/90); (H) Illustration of intracellular Ca2+ properties; (I) Baseline Fura-2 fluorescent intensity (FFI); (J) Electrically-stimulated rise in FFI (ΔFFI); and (K) Intracellular Ca2 + transient decay rate. Mean ± SEM, n = 20 cells from three mice per group, *P < 0.05 versus chow group, # P < 0.05 versus HFpEF group.
Fig.8  Schematic diagram illustrating proposed protective role of berberine against HFpEF. The “two-hit” insult evokes oxidative stress, intracellular Ca2+ overload, Drp1 phosphorylation and activation. Berberine treatment inhibits Drp1 expression and then reduces mitochondrial fission and Ca2+ overload, thus ameliorating cardiac diastolic dysfunction in HFpEF.
1 H Tsutsui. Recent advances in the pharmacological therapy of chronic heart failure: evidence and guidelines. Pharmacol Ther 2022; 238: 108185
https://doi.org/10.1016/j.pharmthera.2022.108185 pmid: 35413307
2 JE Ho, MM Redfield, GD Lewis, WJ Paulus, CSP Lam. Deliberating the diagnostic dilemma of heart failure with preserved ejection fraction. Circulation 2020; 142(18): 1770–1780
https://doi.org/10.1161/CIRCULATIONAHA.119.041818 pmid: 33136513
3 M Abudureyimu, X Luo, X Wang, JR Sowers, W Wang, J Ge, J Ren, Y Zhang. Heart failure with preserved ejection fraction (HFpEF) in type 2 diabetes mellitus: from pathophysiology to therapeutics. J Mol Cell Biol 2022; 14(5): mjac028
https://doi.org/10.1093/jmcb/mjac028 pmid: 35511596
4 Y Zheng, S Ma, Q Huang, Y Fang, H Tan, Y Chen, C Li. Meta-analysis of the efficacy and safety of finerenone in diabetic kidney disease. Kidney Blood Press Res 2022; 47(4): 219–228
https://doi.org/10.1159/000521908 pmid: 35034019
5 BA Borlaug. Evaluation and management of heart failure with preserved ejection fraction. Nat Rev Cardiol 2020; 17(9): 559–573
https://doi.org/10.1038/s41569-020-0363-2 pmid: 32231333
6 Y Zhang, AT Whaley-Connell, JR Sowers, J Ren. Autophagy as an emerging target in cardiorenal metabolic disease: from pathophysiology to management. Pharmacol Ther 2018; 191: 1–22
https://doi.org/10.1016/j.pharmthera.2018.06.004 pmid: 29909238
7 L Rosalia, C Ozturk, S Shoar, Y Fan, G Malone, FH Cheema, C Conway, RA Byrne, GP Duffy, A Malone, ET Roche, A Hameed. Device-based solutions to improve cardiac physiology and hemodynamics in heart failure with preserved ejection fraction. JACC Basic Transl Sci 2021; 6(9–10): 772–795
https://doi.org/10.1016/j.jacbts.2021.06.002 pmid: 34754993
8 SJ Shah, BA Borlaug, DW Kitzman, AD McCulloch, BC Blaxall, R Agarwal, JA Chirinos, S Collins, RC Deo, MT Gladwin, H Granzier, SL Hummel, DA Kass, MM Redfield, F Sam, TJ Wang, P Desvigne-Nickens, BB Adhikari. Research priorities for heart failure with preserved ejection fraction: National Heart, Lung, and Blood Institute Working Group summary. Circulation 2020; 141(12): 1001–1026
https://doi.org/10.1161/CIRCULATIONAHA.119.041886 pmid: 32202936
9 Y Cai, Q Xin, J Lu, Y Miao, Q Lin, W Cong, K Chen. A new therapeutic candidate for cardiovascular diseases: berberine. Front Pharmacol 2021; 12: 631100
https://doi.org/10.3389/fphar.2021.631100 pmid: 33815112
10 AF Ceylan-Isik, RM Fliethman, LE Wold, J Ren. Herbal and traditional Chinese medicine for the treatment of cardiovascular complications in diabetes mellitus. Curr Diabetes Rev 2008; 4(4): 320–328
https://doi.org/10.2174/157339908786241142 pmid: 18991600
11 X Ai, P Yu, L Peng, L Luo, J Liu, S Li, X Lai, F Luan, X Meng. Berberine: a review of its pharmacokinetics properties and therapeutic potentials in diverse vascular diseases. Front Pharmacol 2021; 12: 762654
https://doi.org/10.3389/fphar.2021.762654 pmid: 35370628
12 RY Cao, Y Zhang, Z Feng, S Liu, Y Liu, H Zheng, J Yang. The effective role of natural product berberine in modulating oxidative stress and inflammation related atherosclerosis: novel insights into the gut-heart axis evidenced by genetic sequencing analysis. Front Pharmacol 2021; 12: 764994
https://doi.org/10.3389/fphar.2021.764994 pmid: 35002703
13 N An, G Zhang, Y Li, C Yuan, F Yang, L Zhang, Y Gao, Y Xing. Promising antioxidative effect of berberine in cardiovascular diseases. Front Pharmacol 2022; 13: 865353
https://doi.org/10.3389/fphar.2022.865353 pmid: 35321323
14 M Abudureyimu, W Yu, RY Cao, Y Zhang, H Liu, H Zheng. Berberine promotes cardiac function by upregulating PINK1/parkin-mediated mitophagy in heart failure. Front Physiol 2020; 11: 565751
https://doi.org/10.3389/fphys.2020.565751 pmid: 33101051
15 AA Kumar, DP Kelly, JA Chirinos. Mitochondrial dysfunction in heart failure with preserved ejection fraction. Circulation 2019; 139(11): 1435–1450
https://doi.org/10.1161/CIRCULATIONAHA.118.036259 pmid: 30856000
16 GG Schiattarella, F Altamirano, D Tong, KM French, E Villalobos, SY Kim, X Luo, N Jiang, HI May, ZV Wang, TM Hill, PPA Mammen, J Huang, DI Lee, VS Hahn, K Sharma, DA Kass, S Lavandero, TG Gillette, JA Hill. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 2019; 568(7752): 351–356
https://doi.org/10.1038/s41586-019-1100-z pmid: 30971818
17 M Madikyzy, M Tilegen, G Nazarbek, C Mu, A Kutzhanova, X Li, C Ma, Y Xie. Honghua extract mediated potent inhibition of COVID-19 host cell pathways. Sci Rep 2022; 12(1): 14296
https://doi.org/10.1038/s41598-022-15338-9 pmid: 35995784
18 M Galderisi, B Cosyns, T Edvardsen, N Cardim, V Delgado, Salvo G Di, E Donal, LE Sade, L Ernande, M Garbi, J Grapsa, A Hagendorff, O Kamp, J Magne, C Santoro, A Stefanidis, P Lancellotti, B Popescu, G; 2016–2018 EACVI Scientific Documents Committee Habib. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2017; 18(12): 1301–1310
https://doi.org/10.1093/ehjci/jex244 pmid: 29045589
19 J Ren, M Sun, H Zhou, A Ajoolabady, Y Zhou, J Tao, JR Sowers, Y Zhang. FUNDC1 interacts with FBXL2 to govern mitochondrial integrity and cardiac function through an IP3R3-dependent manner in obesity. Sci Adv 2020; 6(38): eabc8561
https://doi.org/10.1126/sciadv.abc8561 pmid: 32938669
20 GP Stefani, L Capalonga, LR da Silva, TG Heck, MN Frizzo, LM Sulzbacher, MM Sulzbacher, D de Batista, S Vedovatto, APS Bertoni, MR Wink, P Dal Lago. Effects of aerobic and resistance exercise training associated with carnosine precursor supplementation on maximal strength and V̇O2max in rats with heart failure. Life Sci 2021; 282: 119816
https://doi.org/10.1016/j.lfs.2021.119816 pmid: 34273376
21 W Yu, X Qin, Y Zhang, P Qiu, L Wang, W Zha, J Ren. Curcumin suppresses doxorubicin-induced cardiomyocyte pyroptosis via a PI3K/Akt/mTOR-dependent manner. Cardiovasc Diagn Ther 2020; 10(4): 752–769
https://doi.org/10.21037/cdt-19-707 pmid: 32968631
22 H Xu, W Yu, S Sun, C Li, J Ren, Y Zhang. TAX1BP1 protects against myocardial infarction-associated cardiac anomalies through inhibition of inflammasomes in a RNF34/MAVS/NLRP3-dependent manner. Sci Bull (Beijing) 2021; 66(16): 1669–1683
https://doi.org/10.1016/j.scib.2021.01.030 pmid: 36654301
23 H Huang, M Li, Y Wang, X Wu, J Shen, Z Xiao, Y Zhao, F Du, Y Chen, Z Wu, H Ji, C Zhang, J Li, Q Wen, PJ Kaboli, CH Cho, S Wang, Y Wang, Y He, X Wu. Excessive intake of longan arillus alters gut homeostasis and aggravates colitis in mice. Front Pharmacol 2021; 12: 640417
https://doi.org/10.3389/fphar.2021.640417 pmid: 33841158
24 J Li, H Li, S Cai, S Bai, H Cai, X Zhang. CD157 in bone marrow mesenchymal stem cells mediates mitochondrial production and transfer to improve neuronal apoptosis and functional recovery after spinal cord injury. Stem Cell Res Ther 2021; 12(1): 289
https://doi.org/10.1186/s13287-021-02305-w pmid: 34001228
25 Z Song, H Song, D Liu, B Yan, D Wang, Y Zhang, X Zhao, X Tian, C Yan, Y Han. Overexpression of MFN2 alleviates sorafenib-induced cardiomyocyte necroptosis via the MAM-CaMKIIδ pathway in vitro and in vivo. Theranostics 2022; 12(3): 1267–1285
https://doi.org/10.7150/thno.65716 pmid: 35154486
26 H Xu, W Yu, S Sun, C Li, Y Zhang, J Ren. Luteolin attenuates doxorubicin-induced cardiotoxicity through promoting mitochondrial autophagy. Front Physiol 2020; 11: 113
https://doi.org/10.3389/fphys.2020.00113 pmid: 32116805
27 S Sun, W Yu, H Xu, C Li, R Zou, NN Wu, L Wang, J Ge, J Ren, Y Zhang. TBC1D15-Drp1 interaction-mediated mitochondrial homeostasis confers cardioprotection against myocardial ischemia/reperfusion injury. Metabolism 2022; 134: 155239
https://doi.org/10.1016/j.metabol.2022.155239 pmid: 35680100
28 L Yang, P Xie, J Wu, J Yu, X Li, H Ma, T Yu, H Wang, J Ye, J Wang, H Zheng. Deferoxamine treatment combined with sevoflurane postconditioning attenuates myocardial ischemia-reperfusion injury by restoring HIF-1/BNIP3-mediated mitochondrial autophagy in GK rats. Front Pharmacol 2020; 11: 6
https://doi.org/10.3389/fphar.2020.00006 pmid: 32140105
29 X Wang, Y Jiang, Y Zhang, Q Sun, G Ling, J Jiang, W Li, X Tian, Q Jiang, L Lu, Y Wang. The roles of the mitophagy inducer Danqi pill in heart failure: a new therapeutic target to preserve energy metabolism. Phytomedicine 2022; 99: 154009
https://doi.org/10.1016/j.phymed.2022.154009 pmid: 35217438
30 AJ Kowaltowski, SL Menezes-Filho, EA Assali, IG Gonçalves, JV Cabral-Costa, P Abreu, N Miller, P Nolasco, FRM Laurindo, A Bruni-Cardoso, OS Shirihai. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis. FASEB J 2019; 33(12): 13176–13188
https://doi.org/10.1096/fj.201901136R pmid: 31480917
31 N Zhu, B Huang, L Zhu, Y Wang. Potential mechanisms of triptolide against diabetic cardiomyopathy based on network pharmacology analysis and molecular docking. J Diabetes Res 2021; 2021: 9944589
https://doi.org/10.1155/2021/9944589 pmid: 34926700
32 LE Wold, DP Relling, J Duan, FL Norby, J Ren. Abrogated leptin-induced cardiac contractile response in ventricular myocytes under spontaneous hypertension: role of Jak/STAT pathway. Hypertension 2002; 39(1): 69–74
https://doi.org/10.1161/hy0102.100777 pmid: 11799081
33 SJ Shah, DW Kitzman, BA Borlaug, L van Heerebeek, MR Zile, DA Kass, WJ Paulus. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 2016; 134(1): 73–90
https://doi.org/10.1161/CIRCULATIONAHA.116.021884 pmid: 27358439
34 M Tong, D Zablocki, J Sadoshima. The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol 2020; 142: 138–145
https://doi.org/10.1016/j.yjmcc.2020.04.015 pmid: 32302592
35 JR Friedman, J Nunnari. Mitochondrial form and function. Nature 2014; 505(7483): 335–343
https://doi.org/10.1038/nature12985 pmid: 24429632
36 A Picca, RT Mankowski, JL Burman, L Donisi, JS Kim, E Marzetti, C Leeuwenburgh. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol 2018; 15(9): 543–554
https://doi.org/10.1038/s41569-018-0059-z pmid: 30042431
37 SC Kamerkar, F Kraus, AJ Sharpe, TJ Pucadyil, MT Ryan. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat Commun 2018; 9(1): 5239
https://doi.org/10.1038/s41467-018-07543-w pmid: 30531964
38 Y Ikeda, A Shirakabe, Y Maejima, P Zhai, S Sciarretta, J Toli, M Nomura, K Mihara, K Egashira, M Ohishi, M Abdellatif, J Sadoshima. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res 2015; 116(2): 264–278
https://doi.org/10.1161/CIRCRESAHA.116.303356 pmid: 25332205
39 A Ajoolabady, M Chiong, S Lavandero, DJ Klionsky, J Ren. Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment. Trends Mol Med 2022; 28(10): 836–849
https://doi.org/10.1016/j.molmed.2022.06.007 pmid: 35879138
40 S Xu, P Wang, H Zhang, G Gong, N Gutierrez Cortes, W Zhu, Y Yoon, R Tian, W Wang. CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation. Nat Commun 2016; 7(1): 13189
https://doi.org/10.1038/ncomms13189 pmid: 27739424
41 BS Jhun, J O-Uchi, SM Adaniya, TJ Mancini, JL Cao, ME King, AK Landi, H Ma, M Shin, D Yang, X Xu, Y Yoon, G Choudhary, RT Clements, U Mende, SS Sheu. Protein kinase D activation induces mitochondrial fragmentation and dysfunction in cardiomyocytes. J Physiol 2018; 596(5): 827–855
https://doi.org/10.1113/JP275418 pmid: 29313986
42 Y Kageyama, M Hoshijima, K Seo, D Bedja, P Sysa-Shah, SA Andrabi, W Chen, A Höke, VL Dawson, TM Dawson, K Gabrielson, DA Kass, M Iijima, H Sesaki. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 2014; 33(23): 2798–2813
https://doi.org/10.15252/embj.201488658 pmid: 25349190
43 H Zhang, P Wang, S Bisetto, Y Yoon, Q Chen, SS Sheu, W Wang. A novel fission-independent role of dynamin-related protein 1 in cardiac mitochondrial respiration. Cardiovasc Res 2017; 113(2): 160–170
https://doi.org/10.1093/cvr/cvw212 pmid: 27794519
44 S Wasiak, R Zunino, HM McBride. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 2007; 177(3): 439–450
https://doi.org/10.1083/jcb.200610042 pmid: 17470634
45 J Shou, Y Huo. PINK1 phosphorylates Drp1S616 to improve mitochondrial fission and inhibit the progression of hypertension-induced HFpEF. Int J Mol Sci 2022; 23(19): 11934
https://doi.org/10.3390/ijms231911934 pmid: 36233236
46 AH Chaanine, LD Joyce, JM Stulak, S Maltais, DL Joyce, JA Dearani, K Klaus, KS Nair, RJ Hajjar, MM Redfield. Mitochondrial morphology, dynamics, and function in human pressure overload or ischemic heart disease with preserved or reduced ejection fraction. Circ Heart Fail 2019; 12(2): e005131
https://doi.org/10.1161/CIRCHEARTFAILURE.118.005131 pmid: 30744415
47 G Favaro, V Romanello, T Varanita, M Andrea Desbats, V Morbidoni, C Tezze, M Albiero, M Canato, G Gherardi, D De Stefani, C Mammucari, B Blaauw, S Boncompagni, F Protasi, C Reggiani, L Scorrano, L Salviati, M Sandri. DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nat Commun 2019; 10(1): 2576
https://doi.org/10.1038/s41467-019-10226-9 pmid: 31189900
48 Q Zhao, D Lu, J Wang, B Liu, H Cheng, MP Mattson, A Cheng. Calcium dysregulation mediates mitochondrial and neurite outgrowth abnormalities in SOD2 deficient embryonic cerebral cortical neurons. Cell Death Differ 2019; 26(9): 1600–1614
https://doi.org/10.1038/s41418-018-0230-4 pmid: 30390091
49 G Morciano, A Rimessi, S Patergnani, VAM Vitto, A Danese, A Kahsay, L Palumbo, M Bonora, MR Wieckowski, C Giorgi, P Pinton. Calcium dysregulation in heart diseases: targeting calcium channels to achieve a correct calcium homeostasis. Pharmacol Res 2022; 177: 106119
https://doi.org/10.1016/j.phrs.2022.106119 pmid: 35131483
50 Siri-Angkul N, Dadfar B, Jaleel R, Naushad J, Parambathazhath J, Doye AA, Xie LH, Gwathmey JK. Calcium and heart failure: how did we get here and where are we going? Int J Mol Sci 2021; 22(14): 7392 doi:10.3390/ijms22147392
pmid: 34299010
51 GS Williams, L Boyman, AC Chikando, RJ Khairallah, WJ Lederer. Mitochondrial calcium uptake. Proc Natl Acad Sci USA 2013; 110(26): 10479–10486
https://doi.org/10.1073/pnas.1300410110 pmid: 23759742
52 JF Garbincius, JW Elrod. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102(2): 893–992
https://doi.org/10.1152/physrev.00041.2020 pmid: 34698550
53 D Miranda-Silva, RCI Wüst, G Conceição, P Gonçalves-Rodrigues, N Gonçalves, A Gonçalves, DWD Kuster, AF Leite-Moreira, der Velden J van, Sousa Beleza JM de, J Magalhães, GJM Stienen, I Falcão-Pires. Disturbed cardiac mitochondrial and cytosolic calcium handling in a metabolic risk-related rat model of heart failure with preserved ejection fraction. Acta Physiol (Oxf) 2020; 228(3): e13378
https://doi.org/10.1111/apha.13378 pmid: 31520455
[1] FMD-23002-of-RJ_suppl_1 Download
[1] Yuhua Fan, Yue Zhang, Hongrui Zhao, Wenfeng Liu, Wanqing Xu, Lintong Jiang, Ranchen Xu, Yue Zheng, Xueqing Tang, Xiaohan Li, Limin Zhao, Xin Liu, Yang Hong, Yuan Lin, Hui Chen, Yong Zhang. lncR-GAS5 upregulates the splicing factor SRSF10 to impair endothelial autophagy, leading to atherogenesis[J]. Front. Med., 2023, 17(2): 317-329.
[2] Susi Zhu, Xu Zhang, Yeye Guo, Ling Tang, Zhe Zhou, Xiang Chen, Cong Peng. NETO2 promotes melanoma progression via activation of the Ca2+/CaMKII signaling pathway[J]. Front. Med., 2023, 17(2): 263-274.
[3] Hongyi Wang, Zhuochao Liu, Jun Wang, Fangqiong Hu, Qi Zhou, Li Wei, Qiyuan Bao, Jizhuang Wang, Jing Liang, Zhihong Liu, Weibin Zhang. Superenhancers activate the autophagy-related genes Beclin1 and LC3B to drive metastasis and drug resistance in osteosarcoma[J]. Front. Med., 2022, 16(6): 883-895.
[4] Qinming Zhou, Lu He, Jin Hu, Yining Gao, Dingding Shen, You Ni, Yuening Qin, Huafeng Liang, Jun Liu, Weidong Le, Sheng Chen. Increased expression of coronin-1a in amyotrophic lateral sclerosis: a potential diagnostic biomarker and therapeutic target[J]. Front. Med., 2022, 16(5): 723-735.
[5] Danyang Song, Jianyu Hao, Daiming Fan. Biological properties and clinical applications of berberine[J]. Front. Med., 2020, 14(5): 564-582.
[6] Jun Song, Yeping Huang, Wenjian Zheng, Jing Yan, Min Cheng, Ruxing Zhao, Li Chen, Cheng Hu, Weiping Jia. Resveratrol reduces intracellular reactive oxygen species levels by inducing autophagy through the AMPK-mTOR pathway[J]. Front. Med., 2018, 12(6): 697-706.
[7] Liang SHI, Li-Hua HU, Yi-Rong LI. Autoimmune regulator regulates autophagy in THP-1 human monocytes[J]. Front Med Chin, 2010, 4(3): 336-341.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed