Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (6) : 883-895    https://doi.org/10.1007/s11684-022-0919-0
RESEARCH ARTICLE
Superenhancers activate the autophagy-related genes Beclin1 and LC3B to drive metastasis and drug resistance in osteosarcoma
Hongyi Wang1,2, Zhuochao Liu1, Jun Wang2, Fangqiong Hu2, Qi Zhou2, Li Wei2, Qiyuan Bao1, Jizhuang Wang2, Jing Liang2, Zhihong Liu1,2(), Weibin Zhang1()
1. Department of Orthopedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
2. Shanghai Institute of Traumatology and Orthopedics, Shanghai 200025, China
 Download: PDF(7877 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metastasis and drug resistance are the leading causes of poor prognosis in patients with osteosarcoma. Identifying the relevant factors that drive metastasis and drug resistance is the key to improving the therapeutic outcome of osteosarcoma. Here, we reported that autophagy was highly activated in metastatic osteosarcoma. We found increased autophagolysosomes in metastatic osteosarcoma cell lines by using electron microscopy, Western blot, and immunofluorescence experiments. We further examined the expression of the autophagy-related genes Beclin1 and LC3B in 82 patients through immunohistochemistry and found that Beclin1 and LC3B were highly related to unfavorable prognosis of osteosarcoma. Knockdown of Beclin1 and LC3B reduced invasion, metastasis, and proliferation in metastatic osteosarcoma cells. In vitro and in vivo studies also demonstrated that inhibiting by 3-MA inhibited cell growth and metastasis. Moreover, we demonstrated that autophagy-related genes were activated by SEs and that the inhibition of SEs by JQ-1 decreased the metastasis of osteosarcoma. Overall, our findings highlighted the association of autophagy with osteosarcoma progression and shed new light on autophagy-targeting therapy for osteosarcoma.

Keywords osteosarcoma      autophagy      metastasis      drug resistance      Beclin1      LC3B     
Corresponding Author(s): Zhihong Liu,Weibin Zhang   
Just Accepted Date: 23 August 2022   Online First Date: 03 November 2022    Issue Date: 16 January 2023
 Cite this article:   
Hongyi Wang,Zhuochao Liu,Jun Wang, et al. Superenhancers activate the autophagy-related genes Beclin1 and LC3B to drive metastasis and drug resistance in osteosarcoma[J]. Front. Med., 2022, 16(6): 883-895.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-022-0919-0
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I6/883
Fig.1  Autophagic flux in metastatic and nonmetastatic osteosarcoma cells. (A–D) Illustration of autophagosomes and autophagolysosomes in NW5, 143B, and U2OS cells before and after BafA1 treatment. The autophagosomes were determined by electron microscopy. (E) Expression of LC3B, Beclin1, and P-ULK1 in osteosarcoma cells. The expression of LC3B, Beclin1, and P-ULK1 was determined in SaOS2, U2OS, HOS, 143B, and NW5 cells by Western blot. GAPDH served as the internal control. (F) Determination of autophagic flux in osteosarcoma cells. The expression and distribution of LC3B in NW5, 143B, U2OS, and SaOS2 cells were determined before and after BafA1 treatment. Green represents LC3B, red represents lysosomes, and blue represents DAPI. The yellow color in the merged image shows the colocalization of LC3 with lysosomes.
Fig.2  Expression of the autophagy-related genes Beclin1 and LC3B in primary tissues of osteosarcoma. (A, B) Representative illustration of Beclin1 and LC3B expression in the tumor tissue of osteosarcoma with favorable or adverse outcomes. Beclin1 and LC3B expression in osteosarcoma tumor tissues was detected by immunochemistry with antibodies against Beclin1 and LC3B. Three tumor tissues from patients with poor prognosis and three from patients with favorable prognosis are illustrated. (C, D) High levels of Beclin1 and LC3B were related to poor overall survival of osteosarcoma. (E, F) High levels of Beclin1 and LC3B were related to poor metastasis-free survival of osteosarcoma.
Fig.3  Knockdown of Beclin1 or LC3B inhibited the proliferation, invasion, and metastasis of osteosarcoma cells. (A) Validation of knockdown efficiency. (B–D) LC3B and Beclin1 knockdown inhibited the proliferation, invasion, and metastasis of 143B cells. Cell-viability (B), wound-healing (C), and Transwell (D) experiments were performed in 143 cells transfected with siRNA targeting LC3B, Beclin1, or nonspecific siRNA (N. C.). (E, F) Inhibition of autophagy by 3-MA inhibited the invasion and metastasis of 143B cells. Wound-healing (E) and Transwell (F) experiments were performed in 143 cells treated with DMSO or 3-MA.
Fig.4  Inhibition of autophagy inhibited the tumor growth and metastasis of osteosarcoma in vivo. (A, B) 3-MA inhibited the tumor growth of osteosarcoma. The tumor volumes (A) and tumor sizes (B) of 3-MA- or placebo-treated Luc-NW5 xenograft mice are shown. NW5 cells were xenografted in NOD-SCID mice via paratibial injection. The tumor-burdened mice were treated with 3-MA or placebo 20 days after xenografting.
Fig.5  Targeting LC3B- and Beclin1-sensitized osteosarcoma cells to chemotherapy. (A, B) Chemotherapy enhanced autophagy in NW5 cells. Autophagosomes and autophagolysosomes detected by electron microscopy (A) in NW5 cells treated with cisplatin and doxorubicin are shown. The statistical analysis is shown (B). (C, D) Knockdown of LC3B- and Beclin1-sensitized NW5 and 143B cells to doxorubicin chemotherapy. The NW5 (C) or 143B (D) cells transfected with N.C. siRNA or siRNA targeting LC3B or Beclin1 was treated with doxorubicin for 24 h. Cell viability was detected by CCK-8 assays. (E) Autophagy inhibition by 3-MA synergistically inhibited the cell growth of osteosarcoma cells. The IC50 of doxorubicin in DMSO- or 3-MA-treated NW cells was detected by CCK8. (F) 3-MA inhibited doxorubicin induced autophagy. The protein levels of LC3B were detected in 3-MA-, BafA1-, or doxorubicin-treated osteosarcoma cells.
Fig.6  H3K27ac signals at the regulatory regions of autophagy-related genes in metastatic and nonmetastatic osteosarcoma cells. Schematic of H3K27ac signals among the regulatory regions of Beclin1 (BECN1), MAP1LC3B (LC3B), MAP1LC3A (LC3A), and ATG5 in metastatic (LM7, MNNG, 143B, and MG63.3) and nonmetastatic (MG63, SaOS2, Hu09, and HOS) cells.
Fig.7  Inhibition of SEs inhibited autophagy and metastasis in osteosarcoma. (A) JQ-1 inhibited the expression of Beclin1 (BECN1), MAP1LC3B (LC3B), MAP1LC3A (LC3A), and ATG5 in 143B and NW5 cells. (B) JQ-1 inhibited the metastasis of 143B and NW5 cells. 143 B and NW5 cells were treated with 1 μmol/L JQ-1 for 48 h, and the expression of BECN1, MAP1LC3B, and MAP1LC3A were examined by qRT-PCR experiments. GAPDH served as internal control. Cell invasion and metastasis were examined by the Transwell assays.
1 LM Kelley, M Schlegel, S Hecker-Nolting, M Kevric, B Haller, C Rössig, P Reichardt, L Kager, T Kühne, G Gosheger, R Windhager, K Specht, H Rechl, PU Tunn, D Baumhoer, T Wirth, M Werner, Kalle T von, M Nathrath, S Burdach, S Bielack, Lüttichau I von. Pathological fracture and prognosis of high-grade osteosarcoma of the extremities: an analysis of 2,847 Consecutive Cooperative Osteosarcoma Study Group (COSS) patients. J Clin Oncol 2020; 38(8): 823–833
https://doi.org/10.1200/JCO.19.00827 pmid: 31928458
2 F Duffaud, O Mir, P Boudou-Rouquette, S Piperno-Neumann, N Penel, E Bompas, C Delcambre, E Kalbacher, A Italiano, O Collard, C Chevreau, E Saada, N Isambert, J Delaye, C Schiffler, C Bouvier, V Vidal, S Chabaud, JY; French Sarcoma Group Blay. Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: a non-comparative, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol 2019; 20(1): 120–133
https://doi.org/10.1016/S1470-2045(18)30742-3 pmid: 30477937
3 J Zhao, DC Dean, FJ Hornicek, X Yu, Z Duan. Emerging next-generation sequencing-based discoveries for targeted osteosarcoma therapy. Cancer Lett 2020; 474: 158–167
https://doi.org/10.1016/j.canlet.2020.01.020 pmid: 31987920
4 MA Anwar, C El-Baba, MH Elnaggar, YO Elkholy, M Mottawea, D Johar, TS Al Shehabi, F Kobeissy, C Moussalem, E Massaad, I Omeis, N Darwiche, AH Eid. Novel therapeutic strategies for spinal osteosarcomas. Semin Cancer Biol 2020; 64: 83–92
https://doi.org/10.1016/j.semcancer.2019.05.018 pmid: 31152785
5 D Heymann. Metastatic osteosarcoma challenged by regorafenib. Lancet Oncol 2019; 20(1): 12–14
https://doi.org/10.1016/S1470-2045(18)30821-0 pmid: 30477938
6 A Italiano, O Mir, S Mathoulin-Pelissier, N Penel, S Piperno-Neumann, E Bompas, C Chevreau, F Duffaud, N Entz-Werlé, E Saada, I Ray-Coquard, C Lervat, N Gaspar, P Marec-Berard, H Pacquement, J Wright, M Toulmonde, A Bessede, A Crombe, M Kind, C Bellera, JY Blay. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol 2020; 21(3): 446–455
https://doi.org/10.1016/S1470-2045(19)30825-3 pmid: 32078813
7 CA Lamb, T Yoshimori, SA Tooze. The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 2013; 14(12): 759–774
https://doi.org/10.1038/nrm3696 pmid: 24201109
8 KH Kim, MS Lee. Autophagy—a key player in cellular and body metabolism. Nat Rev Endocrinol 2014; 10(6): 322–337
https://doi.org/10.1038/nrendo.2014.35 pmid: 24663220
9 D Heras-Sandoval, JM Pérez-Rojas, J Hernández-Damián, J Pedraza-Chaverri. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 2014; 26(12): 2694–2701
https://doi.org/10.1016/j.cellsig.2014.08.019 pmid: 25173700
10 R Kang, HJ Zeh, MT Lotze, D Tang. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011; 18(4): 571–580
https://doi.org/10.1038/cdd.2010.191 pmid: 21311563
11 F Janku, DJ McConkey, DS Hong, R Kurzrock. Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol 2011; 8(9): 528–539
https://doi.org/10.1038/nrclinonc.2011.71 pmid: 21587219
12 M Cicchini, V Karantza, B Xia. Molecular pathways: autophagy in cancer—a matter of timing and context. Clin Cancer Res 2015; 21(3): 498–504
https://doi.org/10.1158/1078-0432.CCR-13-2438 pmid: 25165101
13 E White. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 2012; 12(6): 401–410
https://doi.org/10.1038/nrc3262 pmid: 22534666
14 JMM Levy, CG Towers, A Thorburn. Targeting autophagy in cancer. Nat Rev Cancer 2017; 17(9): 528–542
https://doi.org/10.1038/nrc.2017.53 pmid: 28751651
15 L Galluzzi, JM Bravo-San Pedro, S Demaria, SC Formenti, G Kroemer. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol 2017; 14(4): 247–258
https://doi.org/10.1038/nrclinonc.2016.183 pmid: 27845767
16 R Mathew, V Karantza-Wadsworth, E White. Role of autophagy in cancer. Nat Rev Cancer 2007; 7(12): 961–967
https://doi.org/10.1038/nrc2254 pmid: 17972889
17 X Li, S He, B Ma. Autophagy and autophagy-related proteins in cancer. Mol Cancer 2020; 19(1): 12
https://doi.org/10.1186/s12943-020-1138-4 pmid: 31969156
18 W Bursch. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 2001; 8(6): 569–581
https://doi.org/10.1038/sj.cdd.4400852 pmid: 11536007
19 S Chen, SK Rehman, W Zhang, A Wen, L Yao, J Zhang. Autophagy is a therapeutic target in anticancer drug resistance. Biochim Biophys Acta 2010; 1806(2): 220–229
pmid: 20637264
20 X Sui, R Chen, Z Wang, Z Huang, N Kong, M Zhang, W Han, F Lou, J Yang, Q Zhang, X Wang, C He, H Pan. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 2013; 4(10): e838
https://doi.org/10.1038/cddis.2013.350 pmid: 24113172
21 KN Dalby, I Tekedereli, G Lopez-Berestein, B Ozpolat. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 2010; 6(3): 322–329
https://doi.org/10.4161/auto.6.3.11625 pmid: 20224296
22 M Kim, JY Jung, S Choi, H Lee, LD Morales, JT Koh, SH Kim, YD Choi, C Choi, TJ Slaga, WJ Kim, DJ Kim. GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma by inducing autophagy. Autophagy 2017; 13(1): 149–168
https://doi.org/10.1080/15548627.2016.1239676 pmid: 27754745
23 J Huang, K Liu, Y Yu, M Xie, R Kang, P Vernon, L Cao, D Tang, J Ni. Targeting HMGB1-mediated autophagy as a novel therapeutic strategy for osteosarcoma. Autophagy 2012; 8(2): 275–277
https://doi.org/10.4161/auto.8.2.18940 pmid: 22301993
24 R Horie, O Nakamura, Y Yamagami, M Mori, H Nishimura, N Fukuoka, T Yamamoto. Apoptosis and antitumor effects induced by the combination of an mTOR inhibitor and an autophagy inhibitor in human osteosarcoma MG63 cells. Int J Oncol 2016; 48(1): 37–44
https://doi.org/10.3892/ijo.2015.3227 pmid: 26530936
25 K Liu, T Ren, Y Huang, K Sun, X Bao, S Wang, B Zheng, W Guo. Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma. Cell Death Dis 2017; 8(8): e3015
https://doi.org/10.1038/cddis.2017.422 pmid: 28837148
26 C Lin, H He, H Liu, R Li, Y Chen, Y Qi, Q Jiang, L Chen, P Zhang, H Zhang, H Li, W Zhang, Y Sun, J Xu. Tumour-associated macrophages-derived CXCL8 determines immune evasion through autonomous PD-L1 expression in gastric cancer. Gut 2019; 68(10): 1764–1773
https://doi.org/10.1136/gutjnl-2018-316324 pmid: 30661053
27 W Wang, X Wang, H Fujioka, C Hoppel, AL Whone, MA Caldwell, PJ Cullen, J Liu, X Zhu. Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat Med 2016; 22(1): 54–63
https://doi.org/10.1038/nm.3983 pmid: 26618722
28 T Ren, B Zheng, Y Huang, S Wang, X Bao, K Liu, W Guo. Osteosarcoma cell intrinsic PD-L2 signals promote invasion and metastasis via the RhoA-ROCK-LIMK2 and autophagy pathways. Cell Death Dis 2019; 10(4): 261
https://doi.org/10.1038/s41419-019-1497-1 pmid: 30886151
29 JJ Morrow, I Bayles, APW Funnell, TE Miller, A Saiakhova, MM Lizardo, CF Bartels, MY Kapteijn, S Hung, A Mendoza, G Dhillon, DR Chee, JT Myers, F Allen, M Gambarotti, A Righi, A DiFeo, BP Rubin, AY Huang, PS Meltzer, LJ Helman, P Picci, HH Versteeg, JA Stamatoyannopoulos, C Khanna, PC Scacheri. Positively selected enhancer elements endow osteosarcoma cells with metastatic competence. Nat Med 2018; 24(2): 176–185
https://doi.org/10.1038/nm.4475 pmid: 29334376
30 B Langmead, SL Salzberg. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9(4): 357–359
https://doi.org/10.1038/nmeth.1923 pmid: 22388286
31 J Feng, T Liu, B Qin, Y Zhang, XS Liu. Identifying ChIP-seq enrichment using MACS. Nat Protoc 2012; 7(9): 1728–1740
https://doi.org/10.1038/nprot.2012.101 pmid: 22936215
32 AR Quinlan, IM Hall. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26(6): 841–842
https://doi.org/10.1093/bioinformatics/btq033 pmid: 20110278
33 S Heinz, C Benner, N Spann, E Bertolino, YC Lin, P Laslo, JX Cheng, C Murre, H Singh, CK Glass. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38(4): 576–589
https://doi.org/10.1016/j.molcel.2010.05.004 pmid: 20513432
34 SL Patil, A Palat, Y Pan, K Rajapakshe, R Mirchandani, M Bondesson, JT Yustein, C Coarfa, PH Gunaratne. MicroRNA-509-3p inhibits cellular migration, invasion, and proliferation, and sensitizes osteosarcoma to cisplatin. Sci Rep 2019; 9(1): 19089
https://doi.org/10.1038/s41598-019-55170-2 pmid: 31836741
35 CR Schott, L Ludwig, AJ Mutsaers, RA Foster, GA Wood. The autophagy inhibitor spautin-1, either alone or combined with doxorubicin, decreases cell survival and colony formation in canine appendicular osteosarcoma cells. PLoS One 2018; 13(10): e0206427
https://doi.org/10.1371/journal.pone.0206427 pmid: 30372478
36 M Mori, T Hitora, O Nakamura, Y Yamagami, R Horie, H Nishimura, T Yamamoto. Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int J Oncol 2015; 46(1): 47–54
https://doi.org/10.3892/ijo.2014.2727 pmid: 25351442
37 A Salminen, K Kaarniranta, A Kauppinen, J Ojala, A Haapasalo, H Soininen, M Hiltunen. Impaired autophagy and APP processing in Alzheimer’s disease: the potential role of Beclin 1 interactome. Prog Neurobiol 2013; 106-107: 33–54
https://doi.org/10.1016/j.pneurobio.2013.06.002 pmid: 23827971
38 X Qu, J Yu, G Bhagat, N Furuya, H Hibshoosh, A Troxel, J Rosen, EL Eskelinen, N Mizushima, Y Ohsumi, G Cattoretti, B Levine. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112(12): 1809–1820
https://doi.org/10.1172/JCI20039 pmid: 14638851
39 XH Liang, S Jackson, M Seaman, K Brown, B Kempkes, H Hibshoosh, B Levine. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402(6762): 672–676
https://doi.org/10.1038/45257 pmid: 10604474
40 Y Guo, C Huang, G Li, T Chen, J Li, Z Huang. Paxilitaxel induces apoptosis accompanied by protective autophagy in osteosarcoma cells through hypoxia-inducible factor-1α pathway. Mol Med Rep 2015; 12(3): 3681–3687
https://doi.org/10.3892/mmr.2015.3860 pmid: 26017247
41 H Tao, F Chen, H Liu, Y Hu, Y Wang, H Li. Wnt/β-catenin signaling pathway activation reverses gemcitabine resistance by attenuating Beclin1-mediated autophagy in the MG63 human osteosarcoma cell line. Mol Med Rep 2017; 16(2): 1701–1706
https://doi.org/10.3892/mmr.2017.6828 pmid: 28656199
42 M Dong, XB Wan, ZY Yuan, L Wei, XJ Fan, TT Wang, YC Lv, X Li, ZH Chen, J Chen, Q Lin, JY Wen, XK Ma, Q Liu, XY Wu. Low expression of Beclin 1 and elevated expression of HIF-1α refine distant metastasis risk and predict poor prognosis of ER-positive, HER2-negative breast cancer. Med Oncol 2013; 30(1): 355
https://doi.org/10.1007/s12032-012-0355-0 pmid: 23408367
43 YB Chen, JH Hou, XY Feng, S Chen, ZW Zhou, XS Zhang, MY Cai. Decreased expression of Beclin 1 correlates with a metastatic phenotypic feature and adverse prognosis of gastric carcinomas. J Surg Oncol 2012; 105(6): 542–547
https://doi.org/10.1002/jso.22151 pmid: 22095667
44 H Zhao, M Yang, J Zhao, J Wang, Y Zhang, Q Zhang. High expression of LC3B is associated with progression and poor outcome in triple-negative breast cancer. Med Oncol 2013; 30(1): 475
https://doi.org/10.1007/s12032-013-0475-1 pmid: 23371253
45 BA Scholz, N Sumida, Lima CDM de, I Chachoua, M Martino, I Tzelepis, A Nikoshkov, H Zhao, R Mehmood, EG Sifakis, D Bhartiya, A Göndör, R Ohlsson. WNT signaling and AHCTF1 promote oncogenic MYC expression through super-enhancer-mediated gene gating. Nat Genet 2019; 51(12): 1723–1731
https://doi.org/10.1038/s41588-019-0535-3 pmid: 31784729
46 C Bahr, L von Paleske, VV Uslu, S Remeseiro, N Takayama, SW Ng, A Murison, K Langenfeld, M Petretich, R Scognamiglio, P Zeisberger, AS Benk, I Amit, PW Zandstra, M Lupien, JE Dick, A Trumpp, F Spitz. A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nature 2018; 553(7689): 515–520
https://doi.org/10.1038/nature25193 pmid: 29342133
47 E Chipumuro, E Marco, CL Christensen, N Kwiatkowski, T Zhang, CM Hatheway, BJ Abraham, B Sharma, C Yeung, A Altabef, A Perez-Atayde, KK Wong, GC Yuan, NS Gray, RA Young, RE George. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 2014; 159(5): 1126–1139
https://doi.org/10.1016/j.cell.2014.10.024 pmid: 25416950
48 Y Ying, Y Wang, X Huang, Y Sun, J Zhang, M Li, J Zeng, M Wang, W Xiao, L Zhong, B Xu, L Li, Q Tao, X Wang, XS Shu. Oncogenic HOXB8 is driven by MYC-regulated super-enhancer and potentiates colorectal cancer invasiveness via BACH1. Oncogene 2020; 39(5): 1004–1017
https://doi.org/10.1038/s41388-019-1013-1 pmid: 31591481
49 Y Jiang, YY Jiang, JJ Xie, A Mayakonda, M Hazawa, L Chen, JF Xiao, CQ Li, ML Huang, LW Ding, QY Sun, L Xu, D Kanojia, M Jeitany, JW Deng, LD Liao, HJ Soukiasian, BP Berman, JJ Hao, LY Xu, EM Li, MR Wang, XG Bi, DC Lin, HP Koeffler. Co-activation of super-enhancer-driven CCAT1 by TP63 and SOX2 promotes squamous cancer progression. Nat Commun 2018; 9(1): 3619
https://doi.org/10.1038/s41467-018-06081-9 pmid: 30190462
50 PC Borck, LW Guo, J Plutzky. BET epigenetic reader proteins in cardiovascular transcriptional programs. Circ Res 2020; 126(9): 1190–1208
https://doi.org/10.1161/CIRCRESAHA.120.315929 pmid: 32324495
51 B Chapuy, MR McKeown, CY Lin, S Monti, MG Roemer, J Qi, PB Rahl, HH Sun, KT Yeda, JG Doench, E Reichert, AL Kung, SJ Rodig, RA Young, MA Shipp, JE Bradner. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 2013; 24(6): 777–790
https://doi.org/10.1016/j.ccr.2013.11.003 pmid: 24332044
52 D Chen, Z Zhao, Z Huang, DC Chen, XX Zhu, YZ Wang, YW Yan, S Tang, S Madhavan, W Ni, ZP Huang, W Li, W Ji, H Shen, S Lin, YZ Jiang. Super enhancer inhibitors suppress MYC driven transcriptional amplification and tumor progression in osteosarcoma. Bone Res 2018; 6(1): 11
https://doi.org/10.1038/s41413-018-0009-8 pmid: 29644114
[1] FMD-21073-OF-ZWB_suppl_1 Download
[1] Qinming Zhou, Lu He, Jin Hu, Yining Gao, Dingding Shen, You Ni, Yuening Qin, Huafeng Liang, Jun Liu, Weidong Le, Sheng Chen. Increased expression of coronin-1a in amyotrophic lateral sclerosis: a potential diagnostic biomarker and therapeutic target[J]. Front. Med., 2022, 16(5): 723-735.
[2] Fang Huang, Yanwen Cui, He Yan, Hui Liu, Xiangrui Guo, Guangze Wang, Shuisen Zhou, Zhigui Xia. Prevalence of antifolate drug resistance markers in Plasmodium vivax in China[J]. Front. Med., 2022, 16(1): 83-92.
[3] Jingyue Zhang, Yawen Song, Qianqian Shi, Li Fu. Research progress on FASN and MGLL in the regulation of abnormal lipid metabolism and the relationship between tumor invasion and metastasis[J]. Front. Med., 2021, 15(5): 649-656.
[4] Jianpeng Liu, Xinhua Chen, Shusen Zheng. Immune response triggered by the ablation of hepatocellular carcinoma with nanosecond pulsed electric field[J]. Front. Med., 2021, 15(2): 170-177.
[5] Shengfen Wang, Yang Zhou, Bing Zhao, Xichao Ou, Hui Xia, Yang Zheng, Yuanyuan Song, Qian Cheng, Xinyang Wang, Yanlin Zhao. Characteristics of compensatory mutations in the rpoC gene and their association with compensated transmission of Mycobacterium tuberculosis[J]. Front. Med., 2020, 14(1): 51-59.
[6] Jun Song, Yeping Huang, Wenjian Zheng, Jing Yan, Min Cheng, Ruxing Zhao, Li Chen, Cheng Hu, Weiping Jia. Resveratrol reduces intracellular reactive oxygen species levels by inducing autophagy through the AMPK-mTOR pathway[J]. Front. Med., 2018, 12(6): 697-706.
[7] Liqin Wang, Rene Bernards. Taking advantage of drug resistance, a new approach in the war on cancer[J]. Front. Med., 2018, 12(4): 490-495.
[8] Yun Zhang, Robert A. Weinberg. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front. Med., 2018, 12(4): 361-373.
[9] Haican Liu, Yuanyuan Zhang, Zhiguang Liu, Jinghua Liu, Yolande Hauck, Jiao Liu, Haiyan Dong, Jie Liu, Xiuqin Zhao, Bing Lu, Yi Jiang, Gilles Vergnaud, Christine Pourcel, Kanglin Wan. Associations between Mycobacterium tuberculosis Beijing genotype and drug resistance to four first-line drugs: a survey in China[J]. Front. Med., 2018, 12(1): 92-97.
[10] Bo Zhou, Hongbin Xu, Meng Xia, Chaoyang Sun, Na Li, Ensong Guo, Lili Guo, Wanying Shan, Hao Lu, Yifan Wu, Yuan Li, Degui Yang, Danhui Weng, Li Meng, Junbo Hu, Ding Ma, Gang Chen, Kezhen Li. Overexpressed miR-9 promotes tumor metastasis via targeting E-cadherin in serous ovarian cancer[J]. Front. Med., 2017, 11(2): 214-222.
[11] Yugang Cheng,Hanxiang Zhan,Lei Wang,Jianwei Xu,Guangyong Zhang,Zongli Zhang,Sanyuan Hu. Analysis of 100 consecutive cases of resectable pancreatic neuroendocrine neoplasms: clinicopathological characteristics and long-term outcomes[J]. Front. Med., 2016, 10(4): 444-450.
[12] Chunxiao Li,Haijuan Wang,Feng Lin,Hui Li,Tao Wen,Haili Qian,Qimin Zhan. Bioinformatic exploration of MTA1-regulated gene networks in colon cancer[J]. Front. Med., 2016, 10(2): 178-182.
[13] Jiangnan Liu,Bin Yi,Zhe Zhang,Yi Cao. CD176 single-chain variable antibody fragment inhibits the adhesion of cancer cells to endothelial cells and hepatocytes[J]. Front. Med., 2016, 10(2): 204-211.
[14] Felice Ho-Ching Tsang,Sandy Leung-Kuen Au,Lai Wei,Dorothy Ngo-Yin Fan,Joyce Man-Fong Lee,Carmen Chak-Lui Wong,Irene Oi-Lin Ng,Chun-Ming Wong. MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility[J]. Front. Med., 2015, 9(3): 331-343.
[15] Peter B. Alexander,Xiao-Fan Wang. Resistance to receptor tyrosine kinase inhibition in cancer: molecular mechanisms and therapeutic strategies[J]. Front. Med., 2015, 9(2): 134-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed